如圖1,∠1= 60°,則 ∠2="       " °,∠3="       " °
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,線段AC與BD交于O,DO=DC,AO=AB,E,F(xiàn),G分別是OB,OC,AD中點(diǎn)
(1)如圖1,當(dāng)∠AOB=60°時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 

如圖2,當(dāng)∠AOB=45°時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 
;
(2)如圖3,當(dāng)∠AOB=θ時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 
;
(3)請你從上述三個(gè)結(jié)論中選擇一個(gè)結(jié)論加以證明
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)平行四邊形AOBC在平面直角坐標(biāo)系中的位置如圖所示,∠AOB=60°,AO=1,AC=2,把平行四邊形AOBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A落在y軸上,則旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:在△ABC中,BC=2AB=4,AD為邊BC上的中線,E、F分別為BC、AB上的動點(diǎn),且CE=BF,EF與AD交于點(diǎn)G.FH⊥AG于H
(1)①如圖1,當(dāng)∠B=90°時(shí),F(xiàn)G
=
=
EG;GH=
2
2

②如圖2,當(dāng)∠B=60°時(shí),F(xiàn)G
=
=
EG;GH=
1
1

③如圖3,當(dāng)∠B=α?xí)r,F(xiàn)G
=
=
EG;GH=
1
2
AD
1
2
AD

請你先填上空,再從以上三個(gè)命題中任選擇一個(gè)進(jìn)行證明
(2)如圖4,若(1)中的點(diǎn)E、F分別在BC、AB的延長線上,試問(1)中的結(jié)論是否仍然成立.若成立,請證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南通)菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠ABC=60°,以線段AB為底邊,在線段AB的右側(cè)作底角為α的等腰△ABE,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),以AP為底邊在線段AP的右側(cè)作底角為α的等腰△APQ,連接QE并延長交BC于點(diǎn)F.
(1)如圖1,當(dāng)α=50°時(shí),∠EBF=
10
10
°,猜想∠QFC=
50
50
°;
(2)當(dāng)α=45°時(shí),猜想∠QFC的度數(shù),并證明你的結(jié)論;
(3)如圖2,當(dāng)α為任意角(0°<α<60°)時(shí),猜想∠QFC的度數(shù)是多少?(不需說明理由)

查看答案和解析>>

同步練習(xí)冊答案