已知A(-2,0),B(4,0),C(2,4),
(1)求△ABC的面積;
(2)設(shè)P為x軸上一點,若S△APC=
12
S△APC,試確定P點的坐標(biāo).
分析:(1)先計算出AB=6,然后根據(jù)三角形面積根式計算△ABC的面積;
(2)設(shè)P點坐標(biāo)為(t,0),則AC=|t+2|,再根據(jù)S△APC=
1
2
S△ABC得到
1
2
|t+2|×4=
1
2
×12,然后解方程求出t,即可得到P點坐標(biāo).
解答:解:(1)S△ABC=
1
2
×(4+2)×4=12;
(2)設(shè)P點坐標(biāo)為(t,0),
1
2
|t+2|×4=
1
2
×12,
解得t1=1,t2=-5,
所以P點坐標(biāo)為(-5,0)或(1,0).
點評:本題考查了三角形的面積:三角形的面積等于底邊長與高線乘積的一半,即S=
1
2
×底×高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖為某班35名學(xué)生在某次社會實踐活動中揀廢棄的礦泉水瓶情況條形統(tǒng)計圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動中學(xué)生揀到礦泉水瓶個數(shù)中位數(shù)是5個,則根據(jù)統(tǒng)計圖,下列選項中的( 。⿺(shù)值無法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點A的橫坐標(biāo)為2,點C的橫坐標(biāo)為-
3
2
,則點B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知實數(shù)a、b(a≠b)分別滿足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊答案