(2012•南崗區(qū)一模)王大爺要圍成一個如圖所示的矩形ABCD花圃.花圃的一邊利用20米長的墻,另三邊用總長為36米的籬笆恰好圍成.設A8邊的長為x米,BC的長為y米,且BC>AB.
(1)求y與x之間的函數(shù)關系式(要求直接寫出自變量石的取值范圍);
(2)當x是多少米時,花圃面積S最大?最大面積是多少?
【參考公式:當x=-
b
2a
時,二次函數(shù)y=ax2+bx+c(a≠0)有最小(大)值
4ac-b2
4a
分析:(1)根據(jù)y+2x=36及x<y≤20,求y與x之間的函數(shù)關系式及自變量x的取值范圍;
(2)由S=xy,利用公式可求S的最大值及此時x的值.
解答:解:(1)依題意,得y+2x=36,即y=-2x+36,
∵x<y≤20,
∴x<-2x+36≤20,
解得8≤x<12,
故y與x之間的函數(shù)關系式y(tǒng)=-2x+36(8≤x<12);

(2)S=xy=x(-2x+36)=-2x2+36x,
∵8≤x<12,-2<0,
∴當x=-
b
2a
=9時,S最大=
4ac-b2
4a
=
-362
4×(-2)
=162,
即:當x是9米時,花圃面積S最大,最大面積是162米2
點評:本題考查了二次函數(shù)的實際應用,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•南崗區(qū)一模)如圖,在⊙0中,點A在⊙0上,弦BC⊥OA,垂足為點D且OD=AD,連接AC、AB.則∠BAC的度數(shù)為
120°
120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南崗區(qū)一模)如圖,邊長為1的正方形ABCD繞點A旋轉得到正方形AB1ClD1,若AB1落在對角線AC上,連接A0,則∠AOB1等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南崗區(qū)一模)方程
3
x-3
=
4
x
的解是
12
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南崗區(qū)一模)已知A(x1,y1)B(x2,y2)是反比例函數(shù)y=-
1x
圖象上的兩個點,y1<y2<0則x1與x2的大小關系為
(用“>”或“<”填寫)

查看答案和解析>>

同步練習冊答案