如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BC相交于點(diǎn)P,BE與CD相交于點(diǎn)Q,連接PQ.
求證:△PCQ為等邊三角形.
分析:由C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,利用SAS易證得△ACD≌△BCE,繼而可證得△ACP≌△BCQ,則可得CP=CQ,又由∠BCD=60°,即可證得:△PCQ為等邊三角形.
解答:證明:∵△ABC和△CDE是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
在△ACP和△BCq中,
∠CAP=∠CBQ
AC=BC
∠ACP=∠BCQ=60°

∴△ACP≌△BCQ(ASA),
∴CP=CQ,
∴△PCQ為等邊三角形.
點(diǎn)評(píng):此題考查了等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,C為線段AE上一動(dòng)點(diǎn),(不與A,E重合),在AE同側(cè)分別作等邊三角形ABC和CDE.則以下結(jié)論:①AD=BE  ②CP=CQ  ③AP=BQ   ④DE=DP  ⑤PQ∥AE中正確的有
①②③⑤
.并證明其中的一個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,C為線段AE上一動(dòng)點(diǎn)(不與A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,C為線段AE上一動(dòng)點(diǎn)(不與A,E重合)在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE相交于點(diǎn)O,AD與BC相交于點(diǎn)P,BE與CD相交于點(diǎn)Q,連接PQ.請(qǐng)你寫(xiě)出三個(gè)正確的結(jié)論:
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°

查看答案和解析>>

同步練習(xí)冊(cè)答案