(1)解:∵CF平分∠OCE,
∴∠OCF=∠ECF.
∵OC=CG,CF=CF,
∵在△OCF和△GCF中,
,
∴△OCF≌△GCF(SAS).
∴FG=OF=4,
即FG的長為4.
(2)證明:在BF上截取BH=CF,連接OH.
∵四邊形ABCD為正方形,
∴AC⊥BD,∠DBC=45°,
∴∠BOC=90°,
∴∠OCB=180°-∠BOC-∠DBC=45°.
∴∠OCB=∠DBC.
∴OB=OC.
∵BF⊥CF,
∴∠BFC=90°.
∵∠OBH=180°-∠BOC-∠OMB=90°-∠OMB,
∠OCF=180°-∠BFC-∠FMC=90°-∠FMC,
且∠OMB=∠FMC,
∴∠OBH=∠OCF.
∵在△OBH和△OCF中
,
∴△OBH≌△OCF(SAS).
∴OH=OF,∠BOH=∠COF.
∵∠BOH+∠HOM=∠BOC=90°,
∴∠COF+∠HOM=90°,即∠HOF=90°.
∴∠OHF=∠OFH=
(180°-∠HOF)=45°.
∴∠OFC=∠OFH+∠BFC=135°.
∵△OCF≌△GCF,
∴∠GFC=∠OFC=135°,
∴∠OFG=360°-∠GFC-∠OFC=90°.
∴∠FGO=∠FOG=
(180°-∠OFG)=45°.
∴∠GOF=∠OFH,∠HOF=∠OFG.
∴OG∥FH,OH∥FG,
∴四邊形OHFG是平行四邊形.
∴OG=FH.
∵BF=FH+BH,
∴BF=OG+CF.
分析:(1)根據(jù)條件證明△OCF≌△GCF,由全等的性質(zhì)就可以得出OF=GF而得出結(jié)論;
(2)在BF上截取BH=CF,連接OH.通過條件可以得出△OBH≌△OCF.可以得出OH=OF,從而得出OG∥FH,OH∥FG,進而可以得出四邊形OHFG是平行四邊形,就可以得出結(jié)論.
點評:本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,平行四邊形的判定及性質(zhì)的運用,解答時采用截取法作輔助線是關(guān)鍵.