【題目】如圖,在中,,以為直徑的分別交于點、,延長到點,連接,使

求證:的切線;

,求的長.

【答案】證明見解析;長為

【解析】

(1)連接BD,由圓周角定理得出∠ADB=90°,由等腰三角形的性質得出∠ABC=2ABD,得出∠ABD=CAF,證出∠CAF+CAB=90°,BAFA,即可得出結論;
(2)連接AE,由圓周角定理得出∠AEB=90°,設CE長為x,則EB長為3x,AB=BC=4x.由勾股定理可得AE=x,在RtAEC中,由勾股定理得出方程,解方程即可.

連接,如圖所示:

的直徑

,

,

平分,即

,

,

,即

的切線;

連接,如圖所示:

的直徑

,即為直角三角形,

,

長為,則長為長為

長為,

中由勾股定理可得,

中,,,

由勾股定理得:

解得:,

,即長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,DBC邊上一點,AC=2,CD=1,設∠CAD=α

(1)試寫出α的四個三角函數(shù)值;

(2)若∠B=α,求BD的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201612月底我國首艘航空母艦遼寧艦與數(shù)艘去驅航艦組成編隊,攜多架殲﹣15艦載戰(zhàn)斗機和多型艦載直升機開展跨海區(qū)訓練和試驗任務,在某次演習中,預警直升機A發(fā)現(xiàn)在其北偏東60°,距離160千米處有一可疑目標B,預警直升機立即向位于南偏西30°距離40千米處的航母C報告,航母艦載戰(zhàn)斗機立即升空沿北偏東53°方向向可疑目標飛去,請求出艦載戰(zhàn)斗機到達目標的航程BC.

(結果保留整數(shù),參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,、的平分線分別交、于點、,、相交于點,連接.下列結論:①;④點三個頂點的距離相等;⑤.其中正確的結論有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某船以每小時海里的速度向正東方向航行,在點測得某島在北偏東方向上,航行半小時后到達點測得該島在北偏東方向上,已知該島周圍海里內有暗礁.

說明點是否在暗礁區(qū)域內;

若繼續(xù)向東航行有無觸礁的危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2bxc(a≠0)的圖象如圖所示,則下列結論中正確的是(   )

A. c>-1 B. b>0 C. 2ab ≠0 D. 9a2c>3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BEAD交于點F

⑴求證:ΔABFΔEDF;

⑵若將折疊的圖形恢復原狀,點FBC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內有一點P,若PA=1,PB=2,PC=3.

(1)畫出△ABP繞點B順時針旋轉90°得到的△CBE;

(2)∠APB度數(shù);

(3)求正方形ABCD的面積.

查看答案和解析>>

同步練習冊答案