已知:拋物線y=x2-(m2+5)x+2m2+6.
(1)求證:不論m取何值,拋物線與x軸必有兩個(gè)交點(diǎn),并且有一個(gè)交點(diǎn)是A(2,0);
(2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為B,AB的長(zhǎng)為d,求d與m之間的函數(shù)關(guān)系式;
(3)設(shè)d=10,P(a,b)為拋物線上一點(diǎn).
①當(dāng)△ABP是直角三角形時(shí),求b的值;
②當(dāng)△ABP是銳角三角形、鈍角三角形時(shí),分別寫出b的取值范圍(第②題不要求寫出解答過程).
【答案】分析:(1)令拋物線中y=0,即可用十字相乘法求得兩根的值,由此可得證.
(2)在(1)中已經(jīng)求得了兩點(diǎn)的坐標(biāo),即可表示出AB的距離.
(3)①根據(jù)d的長(zhǎng)以及(2)中得出的d的表達(dá)式可確定出拋物線的解析式,也就能得出A、B的坐標(biāo).可以AB為直徑作圓,圓與拋物線有交點(diǎn),說明拋物線上存在符合條件的P點(diǎn),可根據(jù)拋物線的解析式設(shè)出P點(diǎn)坐標(biāo)(設(shè)橫坐標(biāo),根據(jù)拋物線的解析式表示出縱坐標(biāo)),在直角三角形ABP中,∠APB=90°,如果過P作PQ⊥x軸于Q,那么根據(jù)射影定理可得出PQ2=AQ•QB,由此可求出P點(diǎn)坐標(biāo),確定出b的值;
②根據(jù)圖形與①求出的b值,即可分別確定出當(dāng)△ABP是銳角三角形、鈍角三角形時(shí)b的取值范圍.
解答:解:(1)令y=0,得x2-(m2+5)x+2m2+6=0,
即(x-2)(x-m2-3)=0,
解得:x1=2,x2=m2+3,
∴一定有交點(diǎn)A(2,0),B(m2+3,0)
∴結(jié)論得證;

(2)∵A(2,0),B(m2+3,0)
∴d=AB=m2+1;

(3)①d=AB=m2+1=10,
∴y=x2-14x+24,
∴A(2,0),B(12,0)
以AB為直徑畫圓,由圖可知與拋物線有兩個(gè)交點(diǎn),
∴存在這樣的點(diǎn)P,
設(shè)點(diǎn)P坐標(biāo)為(x,x2-14x+24),作P1Q⊥橫軸于Q,則點(diǎn)Q(x,0),
易得△AQP∽△PQB,
=
∴PQ2=AQ•BQ=(x-2)(12-x)=(x2-14x+24)2,
即(x-2)(12-x)=(x-2)2(x-12)2,(x-2)(x-12)≠0,
∴解得x=7±2,
∴點(diǎn)P為(7+2,-1),或(7-2,-1),
則b=-1;
②當(dāng)△ABP是銳角三角形時(shí),b<-1;當(dāng)△ABP為鈍角三角形時(shí),b>-1.
點(diǎn)評(píng):本題考查了二次函數(shù)與一元二次方程的關(guān)系、直角三角形的判定等知識(shí).綜合性較強(qiáng),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、已知:拋物線y=x2+px+q向左平移2個(gè)單位,再向下平移3個(gè)單位,得到拋物線y=x2-2x-1,則原拋物線的頂點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長(zhǎng)為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(
 
,0)
∵拋物線的對(duì)稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長(zhǎng)為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2+bx+c的圖象經(jīng)過(1,6)、(-1,2)兩點(diǎn).
求:這個(gè)拋物線的解析式、對(duì)稱軸及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=-x2-2(m-1)x+m+1與x軸交于a(-1,0),b(3,0),則m為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•集美區(qū)模擬)已知:拋物線y=x2+(m-1)x+m-2與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<1<x2
(1)求m的取值范圍;
(2)記拋物線與y軸的交點(diǎn)為C,P(x3,m)是線段BC上的點(diǎn),過點(diǎn)P的直線與拋物線交于點(diǎn)Q(x4,y4),若四邊形POCQ是平行四邊形,求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案