【題目】如圖,O是△ABC的外接圓的圓心,∠ABC=60°,BF,CE分別是AC,AB邊上的高且交于點H,CE交⊙O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結論:①∠ABO=∠HBC;②ABBC=2BFBH;③BM=BD;④△GBD為等邊三角形,其中正確結論的序號是( )
A.①② B.①③④ C.①②④ D.①②③④
【答案】D
【解析】
試題分析:①,延長AO交圓于點N,連接BN,可證明∠ABO=∠HBC.因此①正確;
②原式可寫成=,無法直接用相似來求出,那么可通過相等的比例關系式來進行轉換,不難發(fā)現(xiàn)三角形BEC中,∠ABC=60°,那么BC和BE存在倍數(shù)關系,即BC=2BE,因此如果證得=,可發(fā)現(xiàn)這個比例關系式正好是相似三角形BEH和BAF的兩組對應線段,因此本題的結論也是正確的.
③要證MB=BD,先看與BD相等的線段有哪些,不難通過相似三角形ABN和BFC(一組直角,∠OBA=∠OAB=∠FBC)得出,將這個結論和②的結論進行置換即可得出:BD=BO=BH=BG,因此可證MB和圓的半徑相等即可得出BM=BD的結論.如果連接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半徑的長.通過相似三角形BME和CAE可得出,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此,即可得出BM=NC=BO=BD.因此該結論也成立.
④在③中已經得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結論也成立.
因此四個結論都成立,
解:①延長AO交圓于點N,連接BN,則∠ABN=90°,又∠ACB=∠BNA,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正確;
②原式可寫成=,∠ABC=60°,那么BC=2BE,因此=,所以本題的結論也是正確的.
③∵△ABN∽△BFC(一組直角,∠OBA=∠OAB=∠FBC)∴,BD=BO=BH=BG,BM=BD.
連接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,,∴BM=NC=BO=BD.
因此該結論也成立.
④在③中已經得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結論也成立.
因此四個結論都成立,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(4,0),B(0,﹣4),C(a,2a)及點D是一個平行四邊形的四個頂點,則線段CD的長的最小值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算或化簡求值:
(1)(﹣2)2×5﹣(﹣2)3÷4;
(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2];
(3)求代數(shù)式3a+abc﹣(9a﹣c2)的值,其中a=﹣,b=2,c=﹣3.
(4)先化簡再求值:,其中x=﹣2,y=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班一次數(shù)學檢測中,共出了20道題,總分為100分,現(xiàn)從中抽出5份試卷進行分析.如圖表所示:
(1)某同學得了70分,他答對了試卷多少道題?
(2)有一同學H他得了76分,另一同學G說他得了72分,誰說的對了?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C在一次函數(shù)的圖象上,它們的橫坐標依次為,1,2,分別過這些點作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。
A. 1 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據收集到的數(shù)據繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調查中,共調查了_____名學生.
(2)補全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.
(1)若∠BOC=60°,求∠EOF的度數(shù);
(2)若∠AOC=x°(x>90),此時能否求出∠EOF的大小,若能,請求出它的數(shù)值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】去年3月,某炒房團以不多于2224萬元不少于2152萬元的資金分別從A城、B城買入小戶型二手房(80平方米/套)共4000平方米.其中A城、B城的購入價格分別為4000元/平方米、7000元/平方米.自住建部今年5月約談成都市政府負責同志后,成都市進一步加大了調控政策.某炒房團為拋售A城的二手房,決定從6月起每平方米降價1000元.如果賣出相同平方米的房子,那么5月的銷售額為640萬元,6月的銷售額為560萬元.
(1)A城今年6月每平方米的售價為多少元?
(2)請問去年3月有幾種購入方案?
(3)若去年三月所購房產全部沒有賣出,炒房團計劃在7月執(zhí)行銷售方案:B城售價為1.05萬元/平方米,并且每售出一套返還該購房者a元;A城按今年6月的價格進行銷售。要使(2)中的所有方案利潤相同,求出a應取何值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com