如圖,已知AB∥CD∥EF,則∠ABD+∠BDF+∠EFD=


  1. A.
    540°
  2. B.
    360°
  3. C.
    270°
  4. D.
    180°
B
分析:根據(jù)兩直線平行,同旁內角互補的性質得到∠ABD+∠BDC=180°,∠EFD+∠CDF=180°,再把三個角相加即可.
解答:∵AB∥CD∥EF,
∴∠ABD+∠BDC=180°,∠EFD+∠CDF=180°,
∴∠ABD+∠BDF+∠EFD=∠ABD+∠BDC+∠CDF+∠EFD=180°+180°=360°.
故選B.
點評:本題主要利用兩直線平行,同旁內角互補的性質,需要熟練掌握并靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AB∥CD,∠A=38°,則∠1=
142°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥CD,∠1=50°25′,則∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知 AB∥CD,∠A=53°,則∠1的度數(shù)是
127°
127°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥CD∥EF,那么下列結論中,正確的是( 。

查看答案和解析>>

同步練習冊答案