已知從1開(kāi)始連續(xù)n個(gè)自然數(shù)相乘,1×2×3×…×n,乘積的尾部恰有25個(gè)連續(xù)的零,那么n的最大值是?
【答案】分析:首先5、10、15、20、25、…、105與其它偶數(shù)之積的個(gè)位至少有一個(gè)0,105÷5=21個(gè),105÷25=4個(gè)…5,21+4=25個(gè),即連續(xù)自然數(shù)乘積1×2×3×…×105的尾部恰有25個(gè)連續(xù)的0,所以1×2×3×…×n中,n的最大值是105+4=109.
解答:解:凡末位是0的數(shù),都為乘積的尾部貢獻(xiàn)1個(gè)0,2×5=10,每10個(gè)連續(xù)數(shù)中,這樣就為乘積貢獻(xiàn)了2個(gè)零.
從1到100,乘積就有了20個(gè)0,但還有25、50、75和100,都可再貢獻(xiàn)1個(gè)0,這樣就有了24個(gè)0.
要再出現(xiàn)1個(gè)0,即湊成25個(gè)0,還必須出現(xiàn)1個(gè)5(因?yàn)?有的是),所以到105恰有乘積末尾恰有25個(gè)連續(xù)的0.
但此題問(wèn)的是n的最大值,也就是說(shuō),最大到幾不會(huì)出現(xiàn)第26個(gè)0,顯然,是到109. 
故n的最大值是109.
點(diǎn)評(píng):考查了質(zhì)因數(shù)分解,明確若干個(gè)連續(xù)自然數(shù)的乘積末尾有多少個(gè)零,是由多少個(gè)因數(shù)5決定的是完成本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知從1開(kāi)始連續(xù)n個(gè)自然數(shù)相乘,1×2×3×…×n,乘積的尾部恰有25個(gè)連續(xù)的零,那么n的最大值是?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從1開(kāi)始,連續(xù)的奇數(shù)相加,和的情況如下:
1=12
1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
(1)請(qǐng)你推測(cè)出,從1開(kāi)始,n個(gè)連續(xù)的奇數(shù)相加,它們的和s的公式是什么?
(2)計(jì)算:
①1+3+5+7+9+1l+13+15+17+19;
②11+13+15+17+19+21+23+25.
(3)已知1+3+5+…+(2n-1)=225,求整數(shù)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從1開(kāi)始,連續(xù)的奇數(shù)相加,和的情況如下:1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52
(1)請(qǐng)你推算,從1開(kāi)始,n個(gè)連續(xù)奇數(shù)相加,它們的和S的公式是什么?
(2)計(jì)算1+3+5+…+19的和;
(3)計(jì)算11+13+15+…+99的和;
(4)已知:1+3+5+7+…+(2n-1)=225,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知從1開(kāi)始連續(xù)n個(gè)自然數(shù)相乘,1×2×3×…×n,乘積的尾部恰有25個(gè)連續(xù)的零,那么n的最大值是?

查看答案和解析>>

同步練習(xí)冊(cè)答案