【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調(diào)查了若干名學生,根據(jù)調(diào)查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學生,其中最喜愛體育的有人;
(2)在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是 .
(3)小李和小張在新聞、體育、動畫三類電視節(jié)目中分別有一類是自己最喜愛的節(jié)目,請用樹狀圖或列表法求兩人恰好最喜愛同一類節(jié)目的概率.
【答案】
(1)50;10
(2)72°
(3)解:新聞、體育、動畫三類電視節(jié)目分別記為A、B、C,
畫樹狀圖如下:
共有9種等可能的結(jié)果數(shù),
兩人恰好最喜愛同一類節(jié)目的概率為 = .
【解析】解:(1)本次共調(diào)查學生人數(shù)為4÷8%=50人,其中最喜愛體育的有50×(50%﹣30%)=10人, 所以答案是:50,10;
⑵在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是360°×(50%﹣30%)=72°,
所以答案是:72°;
【考點精析】通過靈活運用扇形統(tǒng)計圖和條形統(tǒng)計圖,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F.若∠B=52°,∠DAE=20°,則∠FED′的大小為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= ;正確的是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C.延長AB交CD于點E.連接AC,作∠DAC=∠ACD,作AF⊥ED于點F,交⊙O于點G.
(1)求證:AD是⊙O的切線;
(2)如果⊙O的半徑是6cm,EC=8cm,求GF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A是雙曲線 在第一象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線 上運動,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的切線,BC為⊙O的直徑,AC與⊙O交于點D,點E為AB的中點,PF⊥BC交BC于點G,交AC于點F
(1)求證:ED是⊙O的切線;
(2)求證:△CFP∽△CPD;
(3)如果CF=1,CP=2,sinA= ,求O到DC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com