【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對(duì)角線BD于點(diǎn)EF

(1)求證:AEB≌△CFD;

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

【答案】(1)證明見解析;(2)證明見解析

【解析】試題分析:(1)利用平行四邊形的性質(zhì)結(jié)合全等三角形的判定方法(AAS),得出即可;

2)利用全等三角形的性質(zhì)得出AE=CF,進(jìn)而求出四邊形AFCE是平行四邊形.,再利用菱形的判定方法得出答案.

試題解析:證明:(1)如圖1.

四邊形ABCD是平行四邊形,

∴AB∥DC,AB="DC."

∴∠1=∠2.

∵AE∥CF,

∴∠3=∠4.

△AEB△CFD中,

∴△AEB≌△CFD.

2)如圖2.

∵△AEB≌△CFD,

∴AE=CF.

∵AE∥CF,

四邊形AFCE是平行四邊形.

∵∠5=∠4,∠3=∠4

∴∠5=∠3.

∴AF=AE.

四邊形AFCE是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:x2+(2xy-3y2)-2(x2+yx-2y2),其中x=-1,y=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:a+b=4,則代數(shù)式(a+1)(b+1)﹣ab值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)2011年4月11日在紹興舉行的第三屆全國皮劃艇馬拉松賽,甲、乙運(yùn)動(dòng)員進(jìn)行了艱苦的訓(xùn)練,他們?cè)谙嗤瑮l件下各10次劃艇成績的平均數(shù)相同,方差分別為0.23,0.20,則成績較為穩(wěn)定的是(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣12)+5=( )
A.7
B.﹣7
C.17
D.﹣17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABF中,C為AF上一點(diǎn)且AB=AC.

(1)尺規(guī)作圖:作出以AB為直徑的⊙O,⊙O分別交AC、BC于點(diǎn)D、E,在圖上標(biāo)出D、E,在圖上標(biāo)出D、E(保留作圖痕跡,不寫作法).

(2)若∠BAF=2∠CBF,求證:直線BF是⊙O的切線;

(3)在(2)中,若AB=5,sin∠CBF=,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(-2a2b3c3=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中正確的個(gè)數(shù)是(  )

兩個(gè)能重合的圖形一定關(guān)于某條直線對(duì)稱;等腰三角形底邊上的中線是這個(gè)三角形的對(duì)稱軸;在三角形中,30°角所對(duì)的邊等于最長邊的一半;軸對(duì)稱圖形的對(duì)應(yīng)點(diǎn)一定在對(duì)稱軸的兩側(cè).

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較a與-a的大小( )
A.a>-a
B.a<-a
C.a=-a
D.以上都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案