【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標(biāo)軸分別交于點(diǎn)點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個單位長度移動,動點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個單位長度移動,動點(diǎn)C、D同時出發(fā),當(dāng)動點(diǎn)D到達(dá)原點(diǎn)O時,點(diǎn)C、D停止運(yùn)動.
(1)求該拋物線的解析式及點(diǎn)E的坐標(biāo);
(2)若D點(diǎn)運(yùn)動的時間為t,△CED的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出△CED的面積的最大值.
【答案】(1)y=﹣x2+3x+8,E(﹣2,0);(2)當(dāng)t=5時,S最大=.
【解析】
試題分析:(1)將點(diǎn)A(0,8)、B(8,0)代入拋物線y=﹣x2+bx+c即可求出拋物線的解析式為:y=﹣x2+3x+8;再令y=0,得:﹣x2+3x+8=0,解方程可得點(diǎn)E的坐標(biāo);
(2)根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動t秒時,BD=t,OC=t,然后由點(diǎn)A(0,8)、B(8,0),可得OA=8,OB=8,從而可得OD=8﹣t,然后令y=0,點(diǎn)E的坐標(biāo)為(﹣2,0),進(jìn)而可得OE=2,DE=2+8﹣t=10﹣t,然后利用三角形的面積公式即可求△CED的面積S與D點(diǎn)運(yùn)動時間t的函數(shù)解析式為:S=﹣t2+5t,然后轉(zhuǎn)化為頂點(diǎn)式即可求出最值為:S最大=.
解:(1)將點(diǎn)A(0,8)、B(8,0)代入拋物線y=﹣x2+bx+c得:,
解得:b=3,c=8,
故拋物線的解析式為:y=﹣x2+3x+8,
∵點(diǎn)A(0,8)、B(8,0),
∴OA=8,OB=8,
令y=0,得:﹣x2+3x+8=0,
解得:x1=8,x2=﹣2,
∵點(diǎn)E在x軸的負(fù)半軸上,
∴點(diǎn)E(﹣2,0),
∴OE=2;
(2)根據(jù)題意得:當(dāng)D點(diǎn)運(yùn)動t秒時,BD=t,OC=t,
∴OD=8﹣t,
∴DE=OE+OD=10﹣t,
∴S=DEOC=(10﹣t)t=﹣t2+5t,
即S=﹣t2+5t=﹣(t﹣5)2+,
∴當(dāng)t=5時,S最大=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是工人將貨物搬運(yùn)上貨車常用的方法,把一塊木板斜靠在貨車車廂的尾部,形成一個斜坡,貨物通過斜坡進(jìn)行搬運(yùn).根據(jù)經(jīng)驗,木板與地面的夾角為20°(即圖2中∠ACB=20°)時最為合適,已知貨車車廂底部到地面的距離AB=1.5m,木板超出車廂部分AD=0.5m,則木板CD的長度為 .
(參考數(shù)據(jù):sin20°≈0.3420,cos20°≈0.9397,精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中與a-b-c的值不相等的是( )
A. a -(b + c) B. a -(b-c)
C. (a-b)+(-c) D. (-c)-(b-a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國的國土面積為9596950平方千米,按四舍五入保留三個有效數(shù)字,則我國的國土面積可表示為________平方千米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)y=x2﹣kx+k﹣2的圖象與y軸的交點(diǎn)在x軸的上方,請寫出一個滿足條件的二次函數(shù)的表達(dá)式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,cosA=,D為AB上一點(diǎn),且AD:BD=1:2,若BC=3,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com