閱讀:D為△ABC中BC邊上一點,連接AD,E為AD上一點.
如圖1,當D為BC邊的中點時,有S△EBD=S△ECD,S△ABE=S△ACE;
BD
DC
=m
時,有
S△EBD
S△ECD
=
S△ABE
S△ACE
=m

解決問題:
在△ABC中,D為BC邊的中點,P為AB邊上的任意一點,CP交AD于點E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當
BP
AP
=1
時,
S1
S2
的值為
 
;
(2)如圖3,當
BP
AP
=n
時,
S1
S2
的值為
 
;
(3)若S△ABC=24,S2=2,則
BP
AP
的值為
 

精英家教網(wǎng)
分析:(1)由已知得,P為AB的中點,根據(jù)三角形三條中線交于一點的性質(zhì),對面積進行轉(zhuǎn)化;
(2)由于AD為中線,可知,∴S△EBD=S△ECD,S△ABE=S△ACE,根據(jù)“等高的兩個三角形面積比等于底邊的比”,列出等式求
S1
S2
;
(3)充分運用(2)的結(jié)論,已知條件,列方程組求n,即
S1
S2
的值.
解答:解:如圖:
(1)連接BE,延長交AC于F.
∵D為BC中點,∴S△EBD=S△ECD,S△ABE=S△ACE,
∵P為AB上的一點,且
BP
AP
=1

∴F為AC的中點(三角形三條中線交于一點).
∴S△AEP=S△BEP,S△AEF=S△CEF,S△ABF=S△CBF,
∵S△ABF=S△AEP+S△BEP+S△AEF=2S△AEP+S△AEF=S△EBD+S△ECD+S△CEF=2S△ECD+S△CEF∴S△AEP=S△ECD,∴
S1
S2
=1.
精英家教網(wǎng)

(2)當
BP
AP
=n
時,S△BPE=nS△APE=nS2,
S△BEC=2S1,S△AEC=S△AEB=(n+1)S2,
由S△BPC=nS△APC,得
2S1+nS2=n(S2+S2+nS2
解得:
S1
S2
=
n2+n
2
;

(3)當S△ABC=24,S2=2,
由(2)的結(jié)論可知,
2S1+2(n+1)S2=24
S2=2
S1=n2+n
,
解得n=2或-5(舍去負值).
BP
AP
=2.
點評:本題考查了三角形的中線等分面積的性質(zhì),等高的兩個三角形面積比等于底邊的比的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

閱讀:D為△ABC中BC邊上一點,連接AD,E為AD上一點.
如圖1,當D為BC邊的中點時,有S△EBD=S△ECD,S△ABE=S△ACE;
數(shù)學公式時,有數(shù)學公式
解決問題:
在△ABC中,D為BC邊的中點,P為AB邊上的任意一點,CP交AD于點E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當數(shù)學公式時,數(shù)學公式的值為______;
(2)如圖3,當數(shù)學公式時,數(shù)學公式的值為______;
(3)若S△ABC=24,S2=2,則數(shù)學公式的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年湖北省黃石市九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

閱讀:D為△ABC中BC邊上一點,連接AD,E為AD上一點.
如圖1,當D為BC邊的中點時,有S△EBD=S△ECD,S△ABE=S△ACE;
時,有
解決問題:
在△ABC中,D為BC邊的中點,P為AB邊上的任意一點,CP交AD于點E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當時,的值為______;
(2)如圖3,當時,的值為______;
(3)若S△ABC=24,S2=2,則的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省黃山市祁門二中中考數(shù)學二模試卷(解析版) 題型:解答題

閱讀:D為△ABC中BC邊上一點,連接AD,E為AD上一點.
如圖1,當D為BC邊的中點時,有S△EBD=S△ECD,S△ABE=S△ACE
時,有
解決問題:
在△ABC中,D為BC邊的中點,P為AB邊上的任意一點,CP交AD于點E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當時,的值為______;
(2)如圖3,當時,的值為______;
(3)若S△ABC=24,S2=2,則的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市海淀區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•海淀區(qū)二模)閱讀:D為△ABC中BC邊上一點,連接AD,E為AD上一點.
如圖1,當D為BC邊的中點時,有S△EBD=S△ECD,S△ABE=S△ACE
時,有
解決問題:
在△ABC中,D為BC邊的中點,P為AB邊上的任意一點,CP交AD于點E、設(shè)△EDC的面積為S1,△APE的面積為S2
(1)如圖2,當時,的值為______;
(2)如圖3,當時,的值為______;
(3)若S△ABC=24,S2=2,則的值為______.

查看答案和解析>>

同步練習冊答案