如圖,在梯形ABCD中,AB∥CD,AC和BD相交于點O,如果S△ODC:S△AOB=1:4,求S△ODC與S△AOD的比.
分析:由于AB∥CD,根據(jù)三角形相似的判定方法得到△ODC∽△OBC,根據(jù)三角形相似的性質(zhì)得到S△ODC:S△AOB=OC2:OA2=1:4,則OC:OA=1:2,然后根據(jù)同高的兩三角形面積的比等于底邊的比求解.
解答:解:∵AB∥CD,
∴△ODC∽△OBC,
∴S△ODC:S△AOB=OC2:OA2=1:4,
∴OC:OA=1:2,
∴S△ODC:S△AOD=OC:OA=1:2.
點評:本題考查了相似三角形的判定與性質(zhì):平行于三角形一邊的直線與其他兩邊所截的三角形與原三角形相似;相似三角形面積的比等于相似比的平方.也考查了三角形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案