如圖,網(wǎng)格中的圖案是美國總統(tǒng)Garfield于1876年給出的一種驗證某個著名結(jié)論的方法:
(1)請你畫出直角梯形EDBC繞EC中點O順時針方向旋轉(zhuǎn)180°的圖案,你會得到一個美麗的圖案.(陰影部分不要涂錯).
(2)若網(wǎng)格中每個小正方形邊長為單位1,旋轉(zhuǎn)后A、B、D的對應(yīng)點為A′、B′、D′,求四邊形ACA′E的面積?
(3)根據(jù)旋轉(zhuǎn)前后形成的這個美麗圖案,你能說出這個著名的結(jié)論嗎?若能,請你寫出這個結(jié)論.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)要求畫出圖.
(2)因為網(wǎng)格中每個小正方形邊長為單位1,得到四邊形的面積.
(3)得到勾股定理這個結(jié)論.
解答:解:(1)如圖.

(2)則四邊形ACA′E的面積=34.

(3)AB2+BC2=AC2勾股定理.
點評:本題考查勾股定理的證明,從圖的特點可得到結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,網(wǎng)格中的圖案是美國總統(tǒng)Garfield于1876年給出的一種驗證某個著名結(jié)論的方法:
(1)請你畫出直角梯形EDBC繞EC中點O順時針方向旋轉(zhuǎn)180°的圖案,你會得到一個美麗的圖案.(陰影部分不要涂錯).
(2)若網(wǎng)格中每個小正方形邊長為單位1,旋轉(zhuǎn)后A、B、D的對應(yīng)點為A′、B′、D′,求四邊形ACA′E的面積?
(3)根據(jù)旋轉(zhuǎn)前后形成的這個美麗圖案,你能說出這個著名的結(jié)論嗎?若能,請你寫出這個結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黑龍江省月考題 題型:解答題

如圖,網(wǎng)格中的圖案是美國總統(tǒng)Garfield于1876年給出的一種驗證某個著名結(jié)論的方法:
(1)請你畫出直角梯形EDBC繞EC中點O順時針方向旋轉(zhuǎn)180°的圖案,你會得到一個美麗的圖案。(陰影部分不要涂錯);
(2)若網(wǎng)格中每個小正方形邊長為單位1,旋轉(zhuǎn)后A、B、D的對應(yīng)點為A′、B′、D′,求四邊形ACA′E的面積?
(3)根據(jù)旋轉(zhuǎn)前后形成的這個美麗圖案,你能說出這個著名的結(jié)論嗎?若能,請你寫出這個結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市曲阜市實驗中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,網(wǎng)格中的圖案是美國總統(tǒng)Garfield于1876年給出的一種驗證某個著名結(jié)論的方法:
(1)請你畫出直角梯形EDBC繞EC中點O順時針方向旋轉(zhuǎn)180°的圖案,你會得到一個美麗的圖案.(陰影部分不要涂錯).
(2)若網(wǎng)格中每個小正方形邊長為單位1,旋轉(zhuǎn)后A、B、D的對應(yīng)點為A′、B′、D′,求四邊形ACA′E的面積?
(3)根據(jù)旋轉(zhuǎn)前后形成的這個美麗圖案,你能說出這個著名的結(jié)論嗎?若能,請你寫出這個結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年江西省撫州市臨川區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,網(wǎng)格中的圖案是美國總統(tǒng)Garfield于1876年給出的一種驗證某個著名結(jié)論的方法:
(1)請你畫出直角梯形EDBC繞EC中點O順時針方向旋轉(zhuǎn)180°的圖案,你會得到一個美麗的圖案.(陰影部分不要涂錯).
(2)若網(wǎng)格中每個小正方形邊長為單位1,旋轉(zhuǎn)后A、B、D的對應(yīng)點為A′、B′、D′,求四邊形ACA′E的面積?
(3)根據(jù)旋轉(zhuǎn)前后形成的這個美麗圖案,你能說出這個著名的結(jié)論嗎?若能,請你寫出這個結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案