已知拋物線與x軸相交于兩點A(1,0),B(-3,0),與y軸相交于點C(0,3).

(1)求此拋物線的函數(shù)表達(dá)式;

(2)如果點是拋物線上的一點,求△ABD的面積.

 

【答案】

(1);(2).

【解析】

試題分析:(1)設(shè)拋物線的解析式為.  將A、B兩點坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值,從而確定該二次函數(shù)的解析式;

(2)將D點橫坐標(biāo)代入拋物線的解析式中,即可求出m的值;以AB為底,D點縱坐標(biāo)的絕對值為高,即可求出△ABD的面積.

試題解析:

解:(1) ∵拋物線與y軸相交于點C(0,3),

∴設(shè)拋物線的解析式為.

∵拋物線與x軸相交于兩點,

 解得: 

∴拋物線的函數(shù)表達(dá)式為:.

(2)∵點是拋物線上一點,

.

.

考點:二次函數(shù)綜合題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線數(shù)學(xué)公式與x軸相交于點A、B,與y軸相交于C.
(1)求點A、B、C的坐標(biāo)及直線BC的解析式;
(2)設(shè)拋物線的頂點為點D,求△ACD的面積S
(3)在直線BC上是否存在一點P,使△ACP是以AC為一腰的等腰三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-1).

(1)求拋物線的解析式;

(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結(jié)DC,當(dāng)△DCE的面積最大時,求點D的坐標(biāo);

(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標(biāo),若不存在,說明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(-1,0),點C的坐標(biāo)為(0,-3),拋物線的頂點為D.

1.求拋物線的解析式和頂點D的坐標(biāo)

2.二次函數(shù)的圖像上是否存在點P,使得SPAB=8SABD?若存在,求出P點坐標(biāo);若不存在,請說明理由;

3.若拋物線的對稱軸與x軸交于E點,點F在直線BC上,點M在的二次函數(shù)圖像上,如果以點F、M、D、E為頂點的四邊形是平行四邊形,請你求出符合條件的點M的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011福建龍巖,24, 13分)如圖,已知拋物線與x軸相交于A、B兩點,其對稱軸為直線,且與x軸交于點D,AO=1.

 

(1) 填空:b=_______。c=_______,

    點B的坐標(biāo)為(_______,_______):

(2) 若線段BC的垂直平分線EF交BC于點E,交x軸于點F.求FC的長;

(3) 探究:在拋物線的對稱軸上是否存在點P,使⊙P與x軸、直線BC都相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山西省臨汾市九年級下學(xué)期第一次月考試卷(解析版) 題型:解答題

如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-1).

(1)求拋物線的解析式;

(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結(jié)DC,當(dāng)△DCE的面積最大時,求點D的坐標(biāo);

(3)在直線BC上是否存在一點P,使△ACP為以AC為腰的等腰三角形,若存在,求點P的坐標(biāo),若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案