(2010•東莞)已知兩個全等的直角三角形紙片ABC、DEF,如圖(1)放置,點B、D重合,點F在BC上,AB與EF交于點G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求證:△EGB是等腰三角形;
(2)若紙片DEF不動,問△ABC繞點F逆時針旋轉最小______度時,四邊形ACDE成為以ED為底的梯形(如圖(2)).求此梯形的高.

【答案】分析:(1)根據(jù)題意,即可發(fā)現(xiàn)∠EBG=∠E=30°,從而證明結論;
(2)要使四邊形ACDE成為以ED為底的梯形,則需BC⊥DE,即可求得∠BFD=30°.再根據(jù)30°的直角三角形的性質(zhì)即可求解.
解答:(1)證明:∵∠C=∠EFB=90°,∠E=∠ABC=30°,
∴∠EBF=60°,
∴∠EBG=∠EBF-∠ABC=60°-30°=∠E.
∴GE=GB,
則△EGB是等腰三角形;

(2)解:要使四邊形ACDE成為以ED為底的梯形,
則需BC⊥DE,即可求得∠BFD=30°.
設BC與DE的交點是H.
在直角三角形DFE中,∠FDH=60°,DF=DE=2,
在直角三角形DFH中,F(xiàn)H=DF•cos∠BFD=2×cos30°=2×=
則CH=BC-BH=AB•cos∠ABC-(BF-FH)=2-(2-)=3-2.
即此梯形的高是3-2.
故答案為:3-2.
點評:此題主要是考查了30°的直角三角形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年中考數(shù)學實戰(zhàn)試卷(B卷)(解析版) 題型:解答題

(2010•東莞)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)求出b,c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2010•東莞)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)求出b,c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•東莞)已知一次函數(shù)y=x-b與反比例函數(shù)的圖象,有一個交點的縱坐標是2,則b的值為    

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省中山市中考數(shù)學試卷(解析版) 題型:解答題

(2010•東莞)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)求出b,c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省中考數(shù)學試卷(解析版) 題型:解答題

(2010•東莞)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)求出b,c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案