【題目】在直角三角形中,,,在邊上取一點(diǎn),使得,點(diǎn)、分別是線段、的中點(diǎn),連接和,作,交于點(diǎn),如圖1所示.
(1)請(qǐng)判斷四邊形是什么特殊的四邊形,并證明你的結(jié)論;
(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到,交線段于點(diǎn),交于點(diǎn),如圖2所示,請(qǐng)證明:;
(3)在第(2)條件下,若點(diǎn)是中點(diǎn),且,,如圖3,求的長(zhǎng)度.
【答案】(1)是菱形,見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】
(1)先判斷出DF∥EM,進(jìn)而判斷出EF∥CD,得出四邊形DFEM是平行四邊形,再判斷出DF=DM,即可得出結(jié)論;
(2)先判斷出∠FEG=∠MEN,進(jìn)而判斷出∠DAF=∠ADF,即可得出∠AFE=∠CDF,進(jìn)而得出∠AFE=∠CME,進(jìn)而判斷出△EFG≌△EMN(ASA),即可得出結(jié)論;
(3)先求出BC=6,進(jìn)而求出CE=3,BD=2,CD=2,進(jìn)而求出FG=AF= ,即可求出MN=FG=,再求出EF=CD=,進(jìn)而得出CN,即可求出EH=CN,CH,進(jìn)而得出EH=CE-CH,最后用勾股定理即可得出結(jié)論.
解:(1)∵,是,的中點(diǎn),
∴,
∴,
∵,
∴,
∴,
∴,
∴四邊形是平行四邊形,
∵,點(diǎn)是的中點(diǎn),
∴點(diǎn)是的中點(diǎn),
∴,
∵點(diǎn)是中點(diǎn),
∴,
∵,
∴,
∵四邊形是平行四邊形,
∴是菱形;
(2)由旋轉(zhuǎn)知,,
∴,
在中,點(diǎn)是中點(diǎn),
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
由(1)知,四邊形是菱形,
∴,
∴,
∴,
(3)延長(zhǎng)交于,在中,,
∴,
∵,
∴,
∴,
在中,點(diǎn)是中點(diǎn),
∴,
∴,
∴
∴,
在中,,
∴,
在中,,
∴
∴,
∵為中點(diǎn),
∴,
∵,
∴,
∵為中點(diǎn),
∴,
∵,
∴,
∴,
∴,
在中,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),BC=AC
(1)求過(guò)點(diǎn)A,B的直線的函數(shù)表達(dá)式;
(2)在x軸上找一點(diǎn)D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問(wèn)是否存在這樣的m,使得△APQ與△ADB相似?如存在,請(qǐng)求出m的值;如不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),,對(duì)稱軸為直線,與軸的另一個(gè)交點(diǎn)為點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),速度為1個(gè)單位長(zhǎng)度/秒,同時(shí)點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),速度為2個(gè)單位長(zhǎng)度/秒,當(dāng)點(diǎn)、有一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,連接,設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí),的面積最大,并求出的最大值;
(3)點(diǎn)在軸上,點(diǎn)在拋物線上,是否存在點(diǎn)、,使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,若存在,直接寫出所有符合條件的點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣4x+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出滿足kx+b≥x2﹣4x+m的x的取值范圍.
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P使得PA+PC最小,求P點(diǎn)坐標(biāo)及最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為6的正方形沿其對(duì)角線剪開(kāi),再把沿著方向平移,得到,當(dāng)兩個(gè)三角形重疊部分的面積為5時(shí),則為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解初中各年級(jí)學(xué)生每天的平均睡眠時(shí)間(單位:h,精確到1 h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)求出扇形統(tǒng)計(jì)圖中百分?jǐn)?shù)的值為_(kāi)______,所抽查的學(xué)生人數(shù)為_(kāi)_____;
(2)求出平均睡眠時(shí)間為8小時(shí)的人數(shù),并補(bǔ)全條形圖;
(3)求出這部分學(xué)生的平均睡眠時(shí)間的平均數(shù);
(4)如果該校共有學(xué)生1200名,請(qǐng)你估計(jì)睡眠不足(少于8小時(shí))的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2-4與x軸交于A(-2,0)、B(2,0)兩點(diǎn),點(diǎn)P為拋物線上一點(diǎn),且S△PAB=4.
(1)在直角坐標(biāo)系中畫出圖形;
(2)寫出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線()經(jīng)過(guò)點(diǎn),與軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),且,拋物線的頂點(diǎn)為.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)、、、,求四邊形的面積;
(3)如果點(diǎn)在軸的正半軸上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E為正方形ABCD的邊CD上一點(diǎn),DF⊥AE于點(diǎn)F,交AC于點(diǎn)M,交BC于點(diǎn)G,在CD上取一點(diǎn)G′,使CG′=CG.連接MG′.
(1)求證:∠AED=∠CG′M;
(2)如圖2,連接BD交AE于點(diǎn)N,連接MN,MG′交AE于H.
①試判斷MN與CD的位置關(guān)系,并說(shuō)明理由;
②若AB=12,DG′=G′E,求AH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com