某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價多少元,能使商場獲利最多?
【答案】分析:本題的關(guān)鍵是根據(jù)題意列出一元二次方程,再求其最值.
解答:解:(1)設(shè)每千克應(yīng)漲價x元,則(10+x)(500-20x)=6 000(4分)
解得x=5或x=10,
為了使顧客得到實(shí)惠,所以x=5.(6分)

(2)設(shè)漲價x元時總利潤為y,
則y=(10+x)(500-20x)
=-20x2+300x+5 000
=-20(x2-15x)+5000
=-20(x2-15x+-)+5000
=-20(x-7.5)2+6125
當(dāng)x=7.5時,y取得最大值,最大值為6 125.(8分)
答:(1)要保證每天盈利6000元,同時又使顧客得到實(shí)惠,那么每千克應(yīng)漲價5元;
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價7.5元,能使商場獲利最多.(10分)
點(diǎn)評:求二次函數(shù)的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對值是較小的整數(shù)時,用配方法較好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6 000元,同時又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟(jì)角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•迎江區(qū)一模)某水果批發(fā)商場經(jīng)銷一種水果,如果每千克盈利10元,每天可售出400千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)當(dāng)每千克漲價為多少元時,每天的盈利最多?最多是多少?
(2)若商場只要求保證每天的盈利為4420元,同時又可使顧客得到實(shí)惠,每千克應(yīng)漲價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克,現(xiàn)該商場要保證每天盈利6000元,同時又要顧客得到實(shí)惠,那么每千克應(yīng)漲價
5
5
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2005•揚(yáng)州)某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6 000元,同時又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價
5
5
元.

查看答案和解析>>

同步練習(xí)冊答案