在直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(-數(shù)學(xué)公式,0),把點(diǎn)A繞著坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)135°到點(diǎn)B,那么點(diǎn)B的坐標(biāo)是________.

(1,1)
分析:畫出圖形分析,點(diǎn)B位置如圖所示.作BC⊥y軸于C點(diǎn),根據(jù)∠AOB=135°,有∠BOC=45°,然后解直角三角形求OC、BC的長度,根據(jù)B點(diǎn)在第三象限確定其坐標(biāo).
解答:解:點(diǎn)B位置如圖所示.
作BC⊥y軸于C點(diǎn).
∵A(-,0),
∴OA=
∵∠AOB=135°,
∴∠BOC=45°.
又OB=OA=
∴BC=1,OC=1.
因B在第一象限,所以B(1,1).
故答案為:(1,1).
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的知識(shí),解題的關(guān)鍵是抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時(shí)針,旋轉(zhuǎn)角度135°,通過畫圖計(jì)算得B坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若P為直線AB上一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎如果是,試說明理由,如果不是,請(qǐng)?jiān)诰段AB上求一點(diǎn)C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,-4),C(0,1),過點(diǎn)C作直線DC交x軸于點(diǎn)D,使得以D、C、O為頂點(diǎn)的三角形與△AOB相似,這樣的直線一共可以作出( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•從化市一模)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是
(24,0)
(24,0)
,第(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形精英家教網(wǎng)的直角頂點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

同步練習(xí)冊(cè)答案