(1)解:△AEF是等腰三角形,
理由如下:
∵BF平分∠ABC,
∴∠ABF=∠DBF,
又∵∠BAC=90°,AD⊥BC,
∴∠AFE=90°-∠ABF,∠DEB=90°-∠DBF,
∴∠AFE=∠DEB,
又∵∠DEB=∠AEF,
∴∠AEF=∠AFE,
∴△AEF是等腰三角形;
(2)證明:
∵∠BAC=90°,AD⊥BC,
∴∠AFE+∠ABF=90°,∠DEB+∠BED=90°,
∵AE=AF,
∴∠AFE=∠AEF,
∴∠ABF=∠DBF,
∴BF平分∠ABC.
分析:(1)由角平分線的定義得到∠ABF=∠DBF,再利用互為余角的關(guān)系和三角形內(nèi)外角的關(guān)系,可以得到∠AEF=∠AFE,由此可判定△AEF是等腰三角形;
(2)若要證明BE平分∠ABC,問題可轉(zhuǎn)化為證明∠ABF=∠CBF即可.
點評:本題考查了直角三角形的性質(zhì)、角平分線的性質(zhì)及三角形的內(nèi)外角的關(guān)系,充分利用這些性質(zhì)得到一組角相等,然后利用等腰三角形的判定即可證明結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、若干桶方便面擺放在桌子上,如圖所示是它的三視圖,則這一堆方便面共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、小亮早晨從家騎車到學(xué)校,先上坡后下坡,行程情況如圖所示.若返回時上坡、下坡的速度仍保持不變,那么小明從學(xué)校騎車回家用的時間是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖所示,向平靜的水面投入一枚石子,在水面會激起一圈圈圓形漣漪,當(dāng)半徑從2cm變成5cm時,圓形的面積從
cm2變成
25π
cm2.這一變化過程中
半徑
是自變量,
面積
是函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)二次函數(shù)y=mx2+(6-2m)x+m-3的圖象如圖所示,則m的取值范圍是(  )
A、m>3B、m<3C、0≤m≤3D、0<m<3

查看答案和解析>>

同步練習(xí)冊答案