27、附加題:在正方形ABCD中,P在對(duì)角線(xiàn)上,PE⊥BC于點(diǎn)E,PF⊥DC,垂足為F.求證:AP=EF.
分析:根據(jù)題意,畫(huà)出圖形,可知,要求EF=AP,可證△APE'≌△EFP.
解答:證明:分別延長(zhǎng)FP、EP交AB于F',AD于E',可知四邊形BEPF'和FPE′D是正方形,
∴PE=PF'=AE',PF=PE'.
且∠AE'P=∠EPF.
所以△APE'≌△EFP.
即證AP=EF.
點(diǎn)評(píng):本題主要考查在正方形中三角形全等的問(wèn)題,難度一般,要求學(xué)生熟練掌握過(guò)正方形的對(duì)角線(xiàn)上一點(diǎn)分別向相鄰兩邊作垂線(xiàn)則構(gòu)成正方形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)附加題
(1)試用一元二次方程的求根公式,探索方程ax+bx+c=0(a≠0)的兩根互為倒數(shù)的條件是
 
;
(2)如圖.邊長(zhǎng)為2的兩個(gè)正方形互相重合,按住其中一個(gè)不動(dòng),將另一個(gè)繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則這兩個(gè)正方形重疊部分的面積是
 
;
(3)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線(xiàn)BC的方向以每秒2cm的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線(xiàn)段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)B,A同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).精英家教網(wǎng)
①當(dāng)t為何值時(shí),四邊形PQDC是平行四邊形;
②當(dāng)t為何值時(shí),以C,D,Q,P為頂點(diǎn)的梯形面積等于60cm2
③是否存在點(diǎn)P,使△PQD是等腰三角形?若存在,請(qǐng)求出所有滿(mǎn)足要求的t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題
①觀察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…,則32008的末尾數(shù)字是
 

②規(guī)定一種新運(yùn)算“*”,對(duì)于任意實(shí)數(shù)a和b,有a*b=a÷b+1,則(6x3y-3xy2)*3xy=
 

③如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形都為1,請(qǐng)?jiān)诮o定網(wǎng)格中按下列要求畫(huà)出圖形:
精英家教網(wǎng)(1)從點(diǎn)A出發(fā)畫(huà)一條線(xiàn)段AB,使它的另一端點(diǎn)B在格點(diǎn)(即小正方形的頂點(diǎn))上,且長(zhǎng)度為
5

(2)在圖中正方形網(wǎng)格上畫(huà)出格點(diǎn)四邊形,使四邊形的邊長(zhǎng)分別為
5
13
,
2
,
10
,并求出這個(gè)四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案