如圖,在ABCD的各邊AB、BC、CD、DA上,分別取點K、L、M、N,使AK=CM、BL=DN,則四邊形KLMN為平行四邊形嗎?說明理由.

 

【答案】

【解析】

試題分析:要說明四邊形KLMN為平行四邊形,則可從:兩組對邊分別相等,或一組對邊平行且相等中找條件.由已知是兩組邊相等,所以本題找兩組對邊分別相等這個條件,然后得證.

∵四邊形ABCD是平行四邊形.

∴AD=BC,AB=CD,∠A=∠C,∠B=∠D

∵AK=CM,BL=DN,

∴BK=DM,CL=AN

∴△AKN≌△CML,△BKL≌△DMN

∴KN=ML,KL=MN

∴四邊形KLMN是平行四邊形.

考點:此題主要考查平行四邊形的判定與性質及全等三角形的判定與性質

點評:解答本題的關鍵是熟練掌握平行四邊形的判定方法:

①兩組對邊分別平行的四邊形是平行四邊形;

②兩組對邊分別相等的四邊形是平行四邊形;

③對角線互相平分的四邊形是平行四邊形;

④一組對邊平行且相等的四邊形是平行四邊形.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,在□ABCD的各邊AB、BC、CD、DA上,分別取點K、L、M、N,使AK=CM、BL=DN,則四邊形KLMN為平行四邊形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在ABCD的各邊AB、BC、CD、DA上,分別取點K、L、M、N,使AK=CM、BL=DN,求證:四邊形KLMN為平行四邊形。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在ABCD的各邊AB、BC、CD、DA上,分別取點K、L、M、N,使AK=CM、BL=DN,求證:四邊形KLMN為平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年烏海二中初三畢業(yè)暨模擬考試 題型:解答題

如圖,在ABCD的各邊AB、BC、CD、DA上,分別取點K、L、M、N,使AK=CM、BL=DN,求證:四邊形KLMN為平行四邊形。

 

查看答案和解析>>

同步練習冊答案