【題目】如圖,在RtABO中,∠OBA90°,A(8,8),點(diǎn)C在邊AB上,且,點(diǎn)DOB的中點(diǎn),點(diǎn)P為邊OA上的動點(diǎn),當(dāng)點(diǎn)POA上移動時,使四邊形PDBC周長最小的點(diǎn)P的坐標(biāo)為( 。

A.(22)B.C.D.

【答案】D

【解析】

根據(jù)已知條件得到ABOB8,∠AOB45°,求得BC6,ODBD4,得到D4,0),C8,6),作D關(guān)于直線OA的對稱點(diǎn)E,連接ECOAP,則此時,四邊形PDBC周長最小,E04),求得直線EC的解析式為yx+4,解方程組即可得到結(jié)論.

解:∵在RtABO中,∠OBA90°,A8,8),

ABOB8,∠AOB45°,

,點(diǎn)DOB的中點(diǎn),

BC6ODBD4

D4,0),C8,6),

D關(guān)于直線OA的對稱點(diǎn)E,連接ECOAP,

則此時,四邊形PDBC周長最小,E0,4),

∵直線OA 的解析式為yx,

設(shè)直線EC的解析式為ykx+b,

,

解得:,

∴直線EC的解析式為yx+4,

得,

P,),

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知均為等腰直角三角形,,,點(diǎn)的中點(diǎn),已知為直線上的一個動點(diǎn),連接,則的最小值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.

(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙OBC于點(diǎn)D,過點(diǎn)D⊙O的切線DEAC于點(diǎn)E,交AB延長線于點(diǎn)F.

(1)求證:BD=CD;

(2)求證:DC2=CEAC;

(3)當(dāng)AC=5,BC=6時,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達(dá)B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時間到達(dá)M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達(dá).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°,OC2BOAC6,點(diǎn)B的坐標(biāo)為(10),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為A的拋物線y=a(x-)2-2經(jīng)過點(diǎn)B(-,2),點(diǎn)C(,2).

(1)求拋物線的表達(dá)式;

(2)如圖1,直線AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;

(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過點(diǎn)Q作QN∥y軸,過點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請直接寫出Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已如:⊙O與⊙O上的一點(diǎn)A

(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;( 要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)

(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案