【題目】如圖所示,在△ABC中,∠BAC=130°,AB的垂直平分線ME交BC于點M,交AB于點E,AC的垂直平分線NF交BC于點N,交AC于點F,則∠MAN為( )
A.80°B.70°C.60°D.50°
【答案】A
【解析】
先根據(jù)“AB的垂直平分線ME交BC于點M,交AB于點E,AC的垂直平分線NF交BC于點N,交AC于點F”得出∠BAM=∠ABM,∠CAN=∠ACN,再列出方程∠BAM+∠MAN+∠CAN=130°和∠MAN+2(∠BAM+∠CAN) =180°,解方程即可得出答案.
∵EM是AB的垂直平分線,NF是AC的垂直平分線
∴AM=BM,AN=NC
∴∠BAM=∠ABM,∠CAN=∠ACN
設(shè)∠BAM=∠ABM =x,∠CAN=∠ACN =y
∴∠BAC=∠BAM+∠MAN+∠CAN=x+y+∠MAN=130°
在△AMN中,∠MAN+∠AMN+∠ANM=∠MAN+2∠BAM+2∠CAN=∠MAN+2(∠BAM+∠CAN)= ∠MAN+2(x+y)=180°
聯(lián)立解得:∠MAN=80°,x+y=50°
故答案選擇:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE⊥AB,BD⊥AC,垂足分別為E、D,BD、CE交于點O,AB=AC,∠B=20°,則∠AOD=( 。
A. 20°B. 40°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,、分別是和的平分線,于,交于,于,交于,,,,,結(jié)論①;②;③;④.其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABC 中, AB AC , BAC=100°,點 D 在 BC 上, ABD 和AFD 關(guān)于直線 AD 對稱, FAC 的平分線交 BC 于點 G,連接 FG 當(dāng)BAD _________.時,DFG為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△DEF(其中D,E,F分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出D,E,F三點的坐標(biāo):D( ),E( ),F( );
(3)在y軸上存在一點,使PC﹣PB最大,則點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x22x+c的頂點A在直線l:y=x5上.
(1)求拋物線頂點A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點B,與x軸交于點C、D(C點在D點的左側(cè)),試判斷△ABD的形狀;
(3)在直線l上是否存在一點P,使以點P、A、B、D為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)與探索
小麗發(fā)現(xiàn)通過用兩種不同的方法計算同一幾何體體積,就可以得到一個恒等式.如圖是邊長為的正方體,被如圖所示的分割線分成塊.
;
;
用不同的方法計算這個正方體的體積,就可以得到一個等式,這個等式為:________;
已知,,利用上面的規(guī)律求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點在軸的上方,點C的坐標(biāo)是(1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設(shè)點B的對應(yīng)點B′的橫坐標(biāo)是a,則點B的橫坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com