如圖,⊙O中,弦AB的長為6cm,圓心O到AB的距離為4cm,則⊙O的半徑長為( )
A.3cm
B.4cm
C.5cm
D.6cm
【答案】分析:過點O作OC⊥AB于點C.
根據(jù)垂徑定理和勾股定理求解.
解答:解:過點O作OC⊥AB于點C
∵弦AB的長為6cm,圓心O到AB的距離為4cm
∴OC=4,AC=AB=3
∴OA==5cm
故選C.
點評:本題考查了垂徑定理和勾股定理的綜合應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、如圖,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的長為兩根的一元二次方程是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O中,弦AB、CD相交于AB的中點E,連接AD并延長至點F,使DF=AD,連接BC、BF.
(1)求證:△CBE∽△AFB;
(2)當
BE
FB
=
3
4
時,求
CB
AD
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•畢節(jié)地區(qū))如圖在⊙O中,弦AB=8,OC⊥AB,垂足為C,且OC=3,則⊙O的半徑( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中,弦AB,CD相交于P,且四邊形OEPF是正方形,連接OP.若⊙O的半徑為5cm,OP=3
2
cm
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中,弦AB⊥CD于點E.若ON⊥BD于N,求證:ON=
12
AC.

查看答案和解析>>

同步練習冊答案