(2005•淮安)下列統(tǒng)計量中,能反映一個學生在7~9年級學段的學習成績穩(wěn)定程度的是( )
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)
【答案】分析:方差反映數(shù)據(jù)的穩(wěn)定性,集中程度,波動性;方差越小,數(shù)據(jù)越穩(wěn)定,波動性越。纱丝膳袛嗄芊从骋粋學生在7~9年級學段的學習成績穩(wěn)定程度的量.
解答:解:由于方差反映數(shù)據(jù)的波動大小,則能反映學生的成績穩(wěn)定程度的是方差.
故選C.
點評:此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數(shù)關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷18(高橋初中 鐘玲芳)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數(shù)關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省淮安市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數(shù)關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習冊答案