如圖所示,已知∠ACB=60°,∠ABC=50°,BO,CO分別平分∠ABC,∠ACB,EF經(jīng)過點O且平行于BC,求∠BOC的度數(shù).

解:∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∵BO,CO分別平分∠ABC,∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.
∴∠EOB=25°,∠FOC=30°.
又∵∠EOB+∠BOC+∠FOC=180°,
∴∠BOC=180°-∠EOB-∠FOC=180°-25°-30°=125°.
分析:本題主要利用平行線的性質和角平分線的定義進行做題.
點評:兩直線平行時,應該想到它們的性質,由兩直線平行的關系得到角之間的數(shù)量關系,從而達到解決問題的目的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某廠房屋頂呈人字架形(等腰三角形),如圖所示,已知AC=BC=8m,∠A=30°,CD⊥AB于點D.
(1)求∠ACB的大小;
(2)求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖所示,已知AC=DB,AO=DO,CD=100m,則A,B兩點間的距離( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

28、如圖所示,已知AC⊥BD于點P,AP=CP,請?zhí)砑右粋條件,使BP=DP,并給予證明.
(1)你所添加的條件是:
∠A=∠C
(2)證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某廠房屋頂呈人字架形(等腰三角形),如圖所示,已知AC=BC=10m,∠A=30°,CD⊥AB于點D,則AB=
10
3
m
10
3
m
(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知AC⊥BC,CD⊥AB,∠2與∠A有什么關系?請說明理由.

查看答案和解析>>

同步練習冊答案