如圖,已知:⊙O1、⊙O2外切于點(diǎn)P,A是⊙O1上一點(diǎn),直線(xiàn)AC切⊙O2于點(diǎn)C交⊙O1于點(diǎn)B,直線(xiàn)AP交⊙O2于點(diǎn)D.
(1)求證:PC平分∠BPD;
(2)將“⊙O1、⊙O2外切于點(diǎn)P”改為“⊙O1、⊙O2內(nèi)切于點(diǎn)P”,其它條件不變.(1)中的結(jié)論是否仍然成立?畫(huà)出圖形并證明你的結(jié)論.

【答案】分析:(1)欲證PC平分∠BPD,即證∠BPC=∠CPD,可以過(guò)點(diǎn)P作兩圓的公切線(xiàn)PM交AC于點(diǎn)M,根據(jù)切線(xiàn)的性質(zhì)得出∠BPM=∠A,∠MPC=∠C,再通過(guò)角與角相互間的關(guān)系得出;
(2)同(1),只是∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA.
解答:證明:(1)如圖1,過(guò)點(diǎn)P作兩圓的公切線(xiàn)MP,交AC于點(diǎn)M.
則∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;


(2)如圖2,過(guò)點(diǎn)P作兩圓的公切線(xiàn)PM,
則∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.
點(diǎn)評(píng):本題綜合考查了圓與圓的位置關(guān)系中角平分線(xiàn)的判斷,同時(shí)考查了切線(xiàn)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓O1與圓O2相交于A(yíng),B兩點(diǎn),直線(xiàn)O1A交圓O1于C,交圓O2于D,連接CB精英家教網(wǎng)并延長(zhǎng)交圓O2于E,AF切圓O1于A(yíng),交CE于F.
(1)求證:
CA
CD
=
AF
DE
;
(2)若
CA
AD
=
3
2
,圓O1的半徑為2,且∠C=30°,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A(yíng)、B兩點(diǎn),O2在⊙O1上,AC是⊙O2的直徑,直線(xiàn)CB交⊙O1于D,E為AB延長(zhǎng)線(xiàn)上一點(diǎn),連接DE.
(1)請(qǐng)你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,已知:⊙O1、⊙O2外切于點(diǎn)P,A是⊙O1上一點(diǎn),直線(xiàn)AC切⊙O2于點(diǎn)C交⊙O1于點(diǎn)B,直線(xiàn)AP交⊙O2于點(diǎn)D.
(1)求證:PC平分∠BPD;
(2)將“⊙O1、⊙O2外切于點(diǎn)P”改為“⊙O1、⊙O2內(nèi)切于點(diǎn)P”,其它條件不變.(1)中的結(jié)論是否仍然成立?畫(huà)出圖形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線(xiàn)AB精英家教網(wǎng)切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線(xiàn)段AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=
S△MO2P
S
 
△MOB
的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線(xiàn)AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線(xiàn)段AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=數(shù)學(xué)公式的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案