已知:AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,E是直線AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.
(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:OE•OP=;
(2)當(dāng)點(diǎn)E在AB(或BA)的延長線上時(shí),以如圖2點(diǎn)E的位置為例,請(qǐng)你畫出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請(qǐng)說明理由.
(1)證明見解析;(2)成立, 理由見解析.
【解析】
試題分析:(1)要證等積式,需要將其化為比例式,再利用相似證明. 觀察圖形,此題顯然要連半徑OF,構(gòu)造OE、OP所在的三角形, 這樣問題便轉(zhuǎn)化為證明△FOE∽△POF. 而要證明△FOE∽△POF,由于已經(jīng)存在一個(gè)公共角,因此只需再證明另一角對(duì)應(yīng)相等即可,這一點(diǎn)利用圓周角定理及其推論可獲證.(2)同(1)類似.
試題解析:(1)連接FO并延長交⊙O于Q,連接DQ.
∵FQ是⊙O直徑,∴∠FDQ=90°. ∴∠QFD+∠Q=90°.
∵CD⊥AB,∴∠P+∠C=90°.
∵∠Q=∠C,∴∠QFD=∠P.
∵∠FOE=∠POF,∴△FOE∽△POF. ∴. ∴OE·OP=OF2=r2.
(2)當(dāng)點(diǎn)E在AB(或BA)的延長線上時(shí),(1)中的結(jié)論成立. 理由如下:
依題意畫出圖形(如圖),連接FO并延長交⊙O于M,連接CM.
∵FM是⊙O直徑,∴∠FCM=90°. ∴∠M+∠CFM=90°.
∵CD⊥AB,∴∠E+∠D=90°.
∵∠M=∠D,∴∠CFM=∠E.
∵∠POF=∠FOE,∴△POF∽△FOE. ∴. ∴OE·OP=OF2=r2.
考點(diǎn):1.圓周角定理;2.相似三角形的判定和性質(zhì);3.三角形內(nèi)角和定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com