已知x1,x2,…,x2011都是正數(shù),設(shè)a=(x1+x2+…+x2010)•(x2+x3+…+x2011),b=(x1+x2+…+x2011)•(x2+x3+…+x2010),試比較a,b的大。
分析:設(shè)M=x2+…+x2010,則a=(x1+M)(M+x2011),b=(x1+M+x2011)•M.然后通過(guò)作差來(lái)比較它們的大。
解答:解:設(shè)M=x2+…+x2010,則a=(x1+M)(M+x2011),b=(x1+M+x2011)•M,
所以,a-b=(x1+M)(M+x2011)-(x1+M+x2011)•M
=M•x1+M2+x1•x2011+M•x2011-M•x1-M2+M•x2011
=x1•x2011>0,
∴a>b.
點(diǎn)評(píng):本題考查了多項(xiàng)式乘多項(xiàng)式.解題的難點(diǎn)是求得(a-b)的符號(hào).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2是方程2x2+3x-4=0的兩個(gè)根,求
1
x1
+
1
x2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1、x2是方程x2-2kx+k2-k=0的兩個(gè)實(shí)數(shù)根.是否存在常數(shù)k,使
x1
x2
+
x2
x1
=
3
2
成立?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么有x1+x2=-
b
a
,x1x2=
c
a
.這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以解題,例x1,x2是方程x2+6x-3=0的兩根,求x12+x22的值.解法可以這樣:x1+x2=-6,x1•x2=-3,則x12+x22=(x1+x22-2x1x2=(-6)2-2×(-3)=42.
請(qǐng)你根據(jù)以上解法解答下題:
(1)已知x1,x2是方程x2-4x+2=0的兩根,求:(x1-x22的值;
(2)已知關(guān)于x的方程x2-6x+p2-2p+5=0的一個(gè)根是2,求方程的另一個(gè)根和p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1、x2是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根.求下列代數(shù)式的值:
(1)x12+x22;
(2)x12+3x22+4x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2,…x10的平均數(shù)為a,x11,x12,…x20的平均數(shù)為b,則x1,x2,…x20的平均數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案