因為(±3)2=9,所以±3是9的平方根.

(  )
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,E、F分別是AB、CD上一點,∠2=∠D,∠1與∠C互余,EC⊥AF,試說明AB∥CD(10分) 

填空:  因為 ∠2=∠D
所以。粒啤     
因為。牛谩停粒
所以。牛摹      
所以 ∠C與∠D          
又因為 ∠1與∠C互余
所以 ∠1=     
所以。粒隆        

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建仙游郊尾沙溪中學七年級下學期第二次月考數(shù)學卷(帶解析) 題型:解答題

如圖,E、F分別是AB、CD上一點,∠2=∠D,∠1與∠C互余,EC⊥AF,試說明AB∥CD(10分) 

填空:  因為 ∠2=∠D
所以。粒啤     
因為。牛谩停粒
所以。牛摹      
所以 ∠C與∠D          
又因為 ∠1與∠C互余
所以 ∠1=     
所以。粒隆        

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省常州市七校八年級上學期12月聯(lián)考數(shù)學試卷(帶解析) 題型:解答題

閱讀材料:(本題8分)
例:說明代數(shù)式 的幾何意義,并求它的最小值.
解: ,如圖,建立平面直角坐標系,點P(x,0)是x軸上一點,則可以看成點P與點A(0,1)的距離,可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設點A關于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,
所以PA′+PB的最小值為線段A′B的長度.為此,構造直角
三角形A′CB,因為A′C=3,CB=3,所以A′B=,
即原式的最小值為。

根據(jù)以上閱讀材料,解答下列問題:
(1)代數(shù)式的值可以看成平面直角坐標系中點P(x,0)與點A(1,1)、點B       的距離之和.(填寫點B的坐標)
(2)求代數(shù)式 的最小值

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省常州市七八年級上學期12月考數(shù)學試卷(解析版) 題型:解答題

閱讀材料:(本題8分)

例:說明代數(shù)式 的幾何意義,并求它的最小值.

解: ,如圖,建立平面直角坐標系,點P(x,0)是x軸上一點,則可以看成點P與點A(0,1)的距離,可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.

設點A關于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,

只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,

所以PA′+PB的最小值為線段A′B的長度.為此,構造直角

三角形A′CB,因為A′C=3,CB=3,所以A′B=,

即原式的最小值為。

根據(jù)以上閱讀材料,解答下列問題:

(1)代數(shù)式的值可以看成平面直角坐標系中點P(x,0)與點A(1,1)、點B        的距離之和.(填寫點B的坐標)

(2)求代數(shù)式 的最小值

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆北京三中七年級第一學期期中測試數(shù)學試卷(解析版) 題型:解答題

 先閱讀下面文字,然后按要求解題.

例:1+2+3+…+100=?如果一個一個順次相加顯然太繁,我們仔細分析這100個連續(xù)正整數(shù)的規(guī)律和特點,可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.

因為1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結合以后,可以很快求出結果.

   解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)

=101×____= _______

         (1)補全上述例題解題過程

(2)計算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b)

 

查看答案和解析>>

同步練習冊答案