如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(-4,0),點P在射線AB上運動,連結CP與y軸交于點D,連結BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結EF,BF.
(1)求直線AB的函數解析式;
(2)當點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設DE=x,DF=y.請求出y關于x的函數解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標:如果不存在,請說明理由.
(1)y=-x+4 (2)①見解析 y=x (3)存在,點P的坐標為(2,2)或(8,-4)
解析解:(1)設直線AB的函數解析式為y=kx+4,
代入(4,0)得:4k+4=0,
解得:k=-1,
則直線AB的函數解析式為y=-x+4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BDO≌△COD,
∴∠BDO=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②如圖,連結PE,
∵∠ADP是△DPE的一個外角,
∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一個外角,
∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直徑,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF=DE,即y=x;
(3)當BD:BF=2:1時,
如圖,過點F作FH⊥OB于點H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,
∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,
∴△BOD∽△FHB,
∴=2,
∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,
∴四邊形OEFH是矩形,
∴OE=FH=2,
∴EF=OH=4-OD,
∵DE=EF,
∴2+OD=4-OD,
解得:OD=,∴點D的坐標為(0,),
∴直線CD的解析式為y=x+,
由,得:,
則點P的坐標為(2,2);
當時,
連結EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEP=∠DPA,
∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
如圖,過點F作FG⊥OB于點G,
同理可得:△BOD∽△FGB,
∴,
∴FG=8,OD=BG,
∵∠FGO=∠GOE=∠OEF=90°,
∴四邊形OEFG是矩形,
∴OE=FG=8,
∴EF=OG=4+2OD,
∵DE=EF,
∴8-OD=4+2OD,
OD=,
∴點D的坐標為(0,-),
直線CD的解析式為:,
由,得:,
∴點P的坐標為(8,-4),
綜上所述,點P的坐標為(2,2)或(8,-4).
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,直線y=2x+b(b<0)與坐標軸交于A,B兩點,與雙曲線(x>0)交于D點,過點D作DC⊥x軸,垂足為C,連接OD。已知△AOB≌△ACD。
(1)如果b=-2,求k的值;
(2)試探究k與b的數量關系,并寫出直線OD的解析式。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產A、B兩種產品共40件.生產每件A種產品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產每件B種產品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產A種產品x件.
(1)完成下表
| 甲(kg) | 乙(kg) | 件數(件) |
A | | 5x | x |
B | 4(40-x) | | 40-x |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
游泳池常需進行換水清洗,圖中的折線表示的是游泳池換水清洗過程“排水——清洗——灌水”中水量y(m3)與時間t(min)之間的函數關系式.
(1)根據圖中提供的信息,求整個換水清洗過程水量y(m3)與時間t(min)的函數解析式;
(2)問:排水、清洗、灌水各花多少時間?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
我市某工藝廠為配合奧運會,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經過調查,得到如下數據:
銷售單價x(元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天銷售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線AB分別與兩坐標軸交于點A(4,0).B(0,8),點C的坐標為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F,若矩形OEPF的面積為6,求點P的坐標.
②連結CP,是否存在點P,使與相似,若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,△ABC三個頂點的坐標分別為A(2,3)、B(1,1)、C(5,1),先將△ABC作關于x軸的軸對稱圖形得到△A1B1C1,再將△A1B1C1向左平移5個單位得△A2B2C2.
(1)分別畫出兩次變換的像△A1B1C1與△A2B2C2;
(2)求出邊AB所在直線的函數解析式,并判斷點C2是否在該直線上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com