在直角三角形中,一個(gè)銳角的對(duì)邊與鄰邊的比,叫做這個(gè)銳角的( )
A.正切三角函數(shù)
B.余切三角函數(shù)
C.正弦三角函數(shù)
D.余弦三角函數(shù)
【答案】分析:根據(jù)銳角三角函數(shù)的定義解答即可.
解答:解:在直角三角形中,一個(gè)銳角的對(duì)邊與鄰邊的比,叫做這個(gè)銳角的正切三角函數(shù).
故選A.
點(diǎn)評(píng):此題比較簡(jiǎn)單,解答此題的關(guān)鍵是熟知三角函數(shù)的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、在直角三角形中,一個(gè)銳角的對(duì)邊與鄰邊的比,叫做這個(gè)銳角的( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角正對(duì)(sad),如圖①,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=底邊/腰=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=
 

(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
 

(3)如圖②,已知sinA=
3
5
,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=
1
1
;
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知cosA=
4
5
,其中∠A為銳角,試求sanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2014•寶山區(qū)一模)通過(guò)銳角三角比的學(xué)習(xí),我們已經(jīng)知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)比與角的大小之間可以相互轉(zhuǎn)化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖在△ABC中,AB=AC,
頂角A的正對(duì)記作sadA,這時(shí)sadA=
底邊
=
BC
AB
.我們?nèi)菀字酪粋(gè)角的大小與這個(gè)角的正對(duì)值也是互相唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果在直角三角形中,一個(gè)銳角是另一個(gè)銳角的3倍,那么這個(gè)三角形中最小的一個(gè)角等于
22.5
22.5
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案