7、因工作需要,對(duì)甲、乙、丙三個(gè)小組的人員進(jìn)行三次調(diào)整,第一次丙組不動(dòng),甲、乙兩組中的一組調(diào)出7人給另一組;第二次乙組不動(dòng),甲、丙兩組中的一組調(diào)出7人給另一組;第三次甲組不動(dòng),乙、丙兩組中的一組調(diào)出7人給另一組,三次調(diào)整后,甲組有5人,乙組有13人,丙組有6人.則各組原有人數(shù)為
5人,13人,6人
分析:每個(gè)組調(diào)整了兩次,可以發(fā)現(xiàn)最后的3個(gè)數(shù)字都比14小,所以不可能出現(xiàn)一個(gè)組增加14人,或者減少14人,所以必定是一次增加7人,另一次必定是減少7人,這就等于既沒(méi)有增加,也沒(méi)有減少.
解答:解:根據(jù)題意,得
三次調(diào)整后的人數(shù)不變.
故答案為甲組、乙組、丙組原來(lái)各有5人、13人、6人.
點(diǎn)評(píng):此題的關(guān)鍵是正確分析理解題意,能夠發(fā)現(xiàn)前后調(diào)整的人數(shù)不變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了參加市教委舉行的“爭(zhēng)創(chuàng)綠色學(xué)校,美化校園環(huán)境”的活動(dòng),某區(qū)教委決定委托園林公司對(duì)所轄甲、乙兩所學(xué)校進(jìn)行校園綠化工作.已知甲校有如圖1所示的矩形內(nèi)陰影部分空地需鋪設(shè)草坪,乙校有如圖2所示的平行四邊形內(nèi)陰影部分空地需鋪設(shè)草坪(圖1,圖2中數(shù)據(jù)單位均為“米”).在A、B兩地分別有同種草皮4500米2和2500米2出售,且售價(jià)一樣.若園林公司向A、B兩地購(gòu)買草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
   甲校 乙校 
 路程(千米) 運(yùn)費(fèi)單價(jià)(元)  路程(千米)  運(yùn)費(fèi)單價(jià)(元)  
 A地           20           0.3           10             0.3
 B地           15           0.2           20             0.2
(注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需要的人民幣)
(1)分別求出圖1、圖2的陰影部分面積;
(2)若甲校從A地購(gòu)買x米2的草皮(x取整數(shù)),因路程關(guān)系,甲校從A地購(gòu)買的草皮數(shù)不超過(guò)甲校從B地購(gòu)買的草皮數(shù),乙校從B地購(gòu)買的草皮數(shù)大于甲校從B地購(gòu)買的草皮數(shù)的
1
5
,那么甲校乙校從A,B兩地購(gòu)買草皮的方案有多少種?
(3)在(2)的條件下,請(qǐng)你設(shè)計(jì)出總運(yùn)費(fèi)最低的草皮運(yùn)送方案,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

因工作需要,對(duì)甲、乙、丙三個(gè)小組的人員進(jìn)行三次調(diào)整,第一次丙組不動(dòng),甲、乙兩組中的一組調(diào)出7人給另一組;第二次乙組不動(dòng),甲、丙兩組中的一組調(diào)出7人給另一組;第三次甲組不動(dòng),乙、丙兩組中的一組調(diào)出7人給另一組,三次調(diào)整后,甲組有5人,乙組有13人,丙組有6人.則各組原有人數(shù)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了參加市教委舉行的“爭(zhēng)創(chuàng)綠色學(xué)校,美化校園環(huán)境”的活動(dòng),某區(qū)教委決定委托園林公司對(duì)所轄甲、乙兩所學(xué)校進(jìn)行校園綠化工作.已知甲校有如圖1所示的矩形內(nèi)陰影部分空地需鋪設(shè)草坪,乙校有如圖2所示的平行四邊形內(nèi)陰影部分空地需鋪設(shè)草坪(圖1,圖2中數(shù)據(jù)單位均為“米”).在A、B兩地分別有同種草皮4500米2和2500米2出售,且售價(jià)一樣.若園林公司向A、B兩地購(gòu)買草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
甲校乙校
路程(千米)運(yùn)費(fèi)單價(jià)(元) 路程(千米) 運(yùn)費(fèi)單價(jià)(元) 
A地     20     0.3     10      0.3
B地     15     0.2     20      0.2
(注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需要的人民幣)
(1)分別求出圖1、圖2的陰影部分面積;
(2)若甲校從A地購(gòu)買x米2的草皮(x取整數(shù)),因路程關(guān)系,甲校從A地購(gòu)買的草皮數(shù)不超過(guò)甲校從B地購(gòu)買的草皮數(shù),乙校從B地購(gòu)買的草皮數(shù)大于甲校從B地購(gòu)買的草皮數(shù)的數(shù)學(xué)公式,那么甲校乙校從A,B兩地購(gòu)買草皮的方案有多少種?
(3)在(2)的條件下,請(qǐng)你設(shè)計(jì)出總運(yùn)費(fèi)最低的草皮運(yùn)送方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開(kāi)中學(xué)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

為了參加市教委舉行的“爭(zhēng)創(chuàng)綠色學(xué)校,美化校園環(huán)境”的活動(dòng),某區(qū)教委決定委托園林公司對(duì)所轄甲、乙兩所學(xué)校進(jìn)行校園綠化工作.已知甲校有如圖1所示的矩形內(nèi)陰影部分空地需鋪設(shè)草坪,乙校有如圖2所示的平行四邊形內(nèi)陰影部分空地需鋪設(shè)草坪(圖1,圖2中數(shù)據(jù)單位均為“米”).在A、B兩地分別有同種草皮4500米2和2500米2出售,且售價(jià)一樣.若園林公司向A、B兩地購(gòu)買草皮,其路程和運(yùn)費(fèi)單價(jià)表如下:
  甲校乙校 
 路程(千米)運(yùn)費(fèi)單價(jià)(元) 路程(千米) 運(yùn)費(fèi)單價(jià)(元)  
 A地          20          0.3          10            0.3
 B地          15          0.2          20            0.2
(注:運(yùn)費(fèi)單價(jià)表示每平方米草皮運(yùn)送1千米所需要的人民幣)
(1)分別求出圖1、圖2的陰影部分面積;
(2)若甲校從A地購(gòu)買x米2的草皮(x取整數(shù)),因路程關(guān)系,甲校從A地購(gòu)買的草皮數(shù)不超過(guò)甲校從B地購(gòu)買的草皮數(shù),乙校從B地購(gòu)買的草皮數(shù)大于甲校從B地購(gòu)買的草皮數(shù)的,那么甲校乙校從A,B兩地購(gòu)買草皮的方案有多少種?
(3)在(2)的條件下,請(qǐng)你設(shè)計(jì)出總運(yùn)費(fèi)最低的草皮運(yùn)送方案,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案