如圖,PA是⊙O的切線,切點為A,PA=,∠APO=30°,則⊙O的半徑長為   
【答案】分析:連接OA,根據(jù)切線的性質(zhì)及特殊角的三角函數(shù)值解答即可.
解答:解:連接OA,由切線性質(zhì)知OA⊥PA.
在Rt△OAP中,PA=,∠APO=30°,
∴OA=PA•tan30°=2.
點評:本題考查的是切線的性質(zhì)及解直角三角形的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省臨沂市莒南縣九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省臨沂市莒南縣九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結BC.求證:AB=2BC

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;    
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年4月中考數(shù)學模擬試卷(58)(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結BC.求證:AB=2BC.

查看答案和解析>>

同步練習冊答案