(2003•廣西)如圖,四邊形ABCD內(nèi)接于半圓O,AB是直徑.
(1)請你添加一個條件,使圖中的四邊形ABCD成等腰梯形,這個條件是______(只需填一個條件);
(2)如果CD=AB,請你設計一個方案,使等腰梯形ABCD分成面積相等的三部分,并給予證明.

【答案】分析:(1)根據(jù)圓內(nèi)接四邊形的對角互補,則只需保證該四邊形是梯形(等腰梯形)即可;
(2)可連接OD、OC,得出DC=AO=BO,△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,根據(jù)三角形的面積公式求出即可.
解答:解:(1)∠A=∠B(或AD=BC,或,
或DC∥AB,或∠D+∠A=180°等);

(2)如圖,連接OD,OC,則
S△AOD=S△CDO=S△BOC=S梯形ABCD;
證明:∵CD∥AB,CD=AB,
∴DC=AO=BO,
∵DC∥AB,
∴△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,
∴S△AOD=S△CDO=S△BOC=S梯形ABCD
點評:本題考查了圓內(nèi)接四邊形的性質(zhì)、等腰梯形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識.注意:圓內(nèi)接梯形一定是等腰梯形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標原點O,與y軸相交于點B,弦BD的延長線交x軸的負半軸于點E,且∠BEO=60°,AD的延長線交x軸于點C.
(1)分別求點E、C的坐標;
(2)求經(jīng)過A、C兩點,且以過E而平行于y軸的直線為對稱軸的拋物線的函數(shù)解析式;
(3)設拋物線的對稱軸與AC的交點為M,試判斷以M點為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年廣西中考數(shù)學試卷(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標原點O,與y軸相交于點B,弦BD的延長線交x軸的負半軸于點E,且∠BEO=60°,AD的延長線交x軸于點C.
(1)分別求點E、C的坐標;
(2)求經(jīng)過A、C兩點,且以過E而平行于y軸的直線為對稱軸的拋物線的函數(shù)解析式;
(3)設拋物線的對稱軸與AC的交點為M,試判斷以M點為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2003•廣西)如圖,四邊形OABC中,OA=OB=OC,∠2是∠1的4倍,那么∠4是∠3的    倍.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《四邊形》(04)(解析版) 題型:解答題

(2003•廣西)如圖,BD、CE是△ABC的中線,G、H分別是BE、CD的中點,BC=8,求GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年廣西中考數(shù)學試卷(解析版) 題型:選擇題

(2003•廣西)如圖所示,在△ABC中,AB=AC=5,D是BC上的點,DE∥AB交AC于點E,DF∥AC交AB于點F,那么四邊形AFDE的周長是( )

A.5
B.10
C.15
D.20

查看答案和解析>>

同步練習冊答案