(2004•重慶)如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC、BC相切于點E、F,與AB分別相交于點G、H,且EH的延長線與CB的延長線交于點D,則CD的長為( )

A.
B.
C.
D.
【答案】分析:連接OE、OF,由切線的性質結合結合直角三角形可得到正方形OECF,并且可求出⊙O的半徑為0.5a,則BF=a-0.5a=0.5a,再由切割線定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性質即可求出BH=BD,最終由CD=BC+BD,即可求出答案.
解答:解:∵△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC、BC相切于點E、F,與AB分別相交于點G、H,且EH的延長線與CB的延長線交于點D
∴連接OE、OF,由切線的性質可得OE=OF=⊙O的半徑,∠OEC=∠OFC=∠C=90°
∴OECF是正方形
∵由△ABC的面積可知×AC×BC=×AC×OE+×BC×OF
∴OE=OF=a=EC=CF,BF=BC-CF=0.5a,GH=2OE=a
∵由切割線定理可得BF2=BH•BG
a2=BH(BH+a)
∴BH=或BH=(舍去)
∵OE∥DB,OE=OH
∴△OEH∽△BDH

∴BH=BD,CD=BC+BD=a+
故選B.
點評:本題需仔細分析題意,結合圖形,利用相似三角形的性質及切線的性質即可解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•重慶)如圖,AB、CD是兩個過江電纜的鐵塔,塔AB高40米,AB的中點為P,塔底B距江面的垂直高度為6米.跨江電纜因重力自然下垂近似成拋物線形,為了保證過往船只的安全,電纜下垂的最低點距江面的高度不得少于30米.已知:人在距塔底B點西50米的地面E點恰好看到點E、P、C在一直線上;再向西前進150米后從地面F點恰好看到點F、A、C在一直線上.
(1)求兩鐵塔軸線間的距離(即直線AB、CD間的距離);
(2)若以點A為坐標原點,向東的水平方向為x軸,取單位長度為1米,BA的延長方向為y軸建立坐標系.求剛好滿足最低高度要求的這個拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《三角形》(04)(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年重慶市中考數(shù)學試卷(解析版) 題型:解答題

(2004•重慶)如圖,AB、CD是兩個過江電纜的鐵塔,塔AB高40米,AB的中點為P,塔底B距江面的垂直高度為6米.跨江電纜因重力自然下垂近似成拋物線形,為了保證過往船只的安全,電纜下垂的最低點距江面的高度不得少于30米.已知:人在距塔底B點西50米的地面E點恰好看到點E、P、C在一直線上;再向西前進150米后從地面F點恰好看到點F、A、C在一直線上.
(1)求兩鐵塔軸線間的距離(即直線AB、CD間的距離);
(2)若以點A為坐標原點,向東的水平方向為x軸,取單位長度為1米,BA的延長方向為y軸建立坐標系.求剛好滿足最低高度要求的這個拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年重慶市中考數(shù)學試卷(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

同步練習冊答案