如果 x-2=0,那么,代數(shù)式 x3-+1 的值是………………………………………( 。
(A) (B) (C) (D)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:黃岡難點(diǎn)課課練八年級(jí)數(shù)學(xué)下冊(cè)(北師大版) 題型:013
如圖所示,下列推理:①如果∠1=∠5,那么∠2=∠6;②如果∠2=∠6,那∠3=∠7;③如果∠3=∠7,那么∠4=∠8;④如果∠4=∠8,那么∠3=∠7.其中不正確的有
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練·九年級(jí)數(shù)學(xué)下(北京課改版)·銀版 題型:044
按如下方法可以將△ABC的三邊縮小為原來的.如圖,任取一點(diǎn)O,連接AO、BO、CO,并取它們的中點(diǎn)D、E、F,△DEF的三邊就是△ABC相應(yīng)三邊的.如果在射線AO、BO、CO上分別取點(diǎn)D、E、F,使DO=2OA,EO=2OB,F(xiàn)O=2OC.那結(jié)果會(huì)怎樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市江干區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題
小明對(duì)直角三角形很感興趣. △ABC中,∠ACB=90°,D是AB上任意一點(diǎn),連接DC,作DE⊥DC,EA⊥AC,DE與AE交于點(diǎn)E.請(qǐng)你跟著他一起解決下列問題:
(1)如圖1,若△ABC是等腰直角三角形,則DE,DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.
(2)如果換一個(gè)直角三角形,如圖2,∠CBA=30°,則DE,DC又有什么數(shù)量關(guān)系?請(qǐng)給出證明.
(3)由(1)、(2)這兩種特殊情況,小明提出問題:如果直角三角形ABC中,BC=mAC,那DE, DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
我國(guó)著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡(jiǎn)單化,抽象問題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對(duì)于這個(gè)求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對(duì)n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為,即1+2+3+4+…+n=.
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A、B,轉(zhuǎn)盤A被均勻地分成4等份,每份分別
標(biāo)上1、2、3、4四個(gè)數(shù)字;轉(zhuǎn)盤B被均勻地分成6等份,每份分別標(biāo)上1、2、3、4、
5、6六個(gè)數(shù)字.有人為甲、乙兩人設(shè)計(jì)了一個(gè)游戲,其規(guī)則如下:
、磐瑫r(shí)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤A與B;
⑵轉(zhuǎn)盤停止后,指針各指向一個(gè)數(shù)字(如果指針恰好指在分格線上,那么重轉(zhuǎn)一次,直
到指針停留在某一數(shù)字為止),用所指的兩個(gè)數(shù)字作乘積,如果得到的積是偶數(shù),那
么甲勝;如果得到的積是奇數(shù),那么乙勝(如轉(zhuǎn)盤A指針指向3,轉(zhuǎn)盤B指針指向5,3×5
=15,按規(guī)則乙勝)。
你認(rèn)為這樣的規(guī)則是否公平?請(qǐng)說明理由;如果不公平,請(qǐng)你設(shè)計(jì)一個(gè)公平的規(guī)則,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com