若式子
x+3
3
的值比式子
2x-1
5
的值大1,則x=
3
3
分析:根據(jù)題意列出關(guān)于x的一元一次方程,求出x的值即可.
解答:解:∵式子
x+3
3
的值比式子
2x-1
5
的值大1,
x+3
3
-
2x-1
5
=1,解得x=3.
故答案為:3.
點(diǎn)評(píng):本題考查的是解一元一次方程,解一元一次方程時(shí)先觀察方程的形式和特點(diǎn),若有分母一般先去分母;若既有分母又有括號(hào),且括號(hào)外的項(xiàng)在乘括號(hào)內(nèi)各項(xiàng)后能消去分母,就先去括號(hào).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)觀察一列數(shù):-2,-4,-8,-16,-32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;根據(jù)這個(gè)規(guī)律,如果a1表示第1項(xiàng),a2表示第2項(xiàng),an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=
-218
-218
;an=
-2n
-2n

(2)如果想求l+3+32+33+…+320的值,可令S=l+3+32+33+…+3201…①
將①式兩邊同乘以3,得
3S=3+32+33+34+…+3202
3S=3+32+33+34+…+3202
…②
由②減去①式,可以求得S=
1
2
(3202-1)
1
2
(3202-1)

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=
-a1qn-1
-a1qn-1
(用含a1,q,n的數(shù)學(xué)式子表示),如果這個(gè)常數(shù)為2008,求al+a2+…+an的值.(用含al,n的數(shù)學(xué)式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)觀察一列數(shù):-2,-4,-8,-16,-32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是______;根據(jù)這個(gè)規(guī)律,如果a1表示第1項(xiàng),a2表示第2項(xiàng),an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=______;an=______
(2)如果想求l+3+32+33+…+320的值,可令S=l+3+32+33+…+3201…①
將①式兩邊同乘以3,得______…②
由②減去①式,可以求得S=______.
(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=______(用含a1,q,n的數(shù)學(xué)式子表示),如果這個(gè)常數(shù)為2008,求al+a2+…+an的值.(用含al,n的數(shù)學(xué)式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案