【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=3,BE=,求半圓和菱形ABFC的面積.
【答案】(1)見解析;(2) .
【解析】
(1)根據(jù)對角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
(2)設(shè)CD=x,連接BD.利用勾股定理構(gòu)建方程即可解決問題;
(1)證明:∵AB是直徑,
∴∠AEB=90°
∴AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四邊形ABFC是平行四邊形,
∵AC=AB,
∴四邊形ABFC是菱形
(2)設(shè)CD=x.連接BD.
∵AB是直徑,
∴∠ADB=∠BDC=90°,
∴AB2-AD2=CB2-CD2,
∴(3+x)2-32=2-x2,
解得x=2或-5(舍)
∴AB=AC=5,BD=
∴S菱形ABFC=AC×BD=20
∴S半圓=×π×π
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種成本價(jià)為10元/kg的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于18元/kg.在銷售過程中發(fā)現(xiàn)銷量y(kg)與售價(jià)x(元/kg)之間滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表所示:
x | 12 | 14 | 15 | 17 |
y | 36 | 32 | 30 | 26 |
⑴求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤,求售價(jià)應(yīng)定為多少元/kg?
⑶設(shè)銷售這種商品每天所獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;并求出該商品銷售單價(jià)定為多少元時(shí),才能使經(jīng)銷商所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,延長矩形ABCD的邊BC至點(diǎn)E,使CE=BD,連結(jié)AE,如果∠ABD=60°,那么∠BAE的度數(shù)是( )
A. 40°B. 55°C. 75°D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生體育測試成績情況,隨機(jī)抽取九年級部分學(xué)生的體育測試成績?yōu)闃颖,?/span>A,B,C,D四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)求出A級學(xué)生的人數(shù)占所抽取總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計(jì)圖中C級所在的扇形圓心角的度數(shù);
(3)所抽取學(xué)生體育測試成績的中位數(shù)落在 等級內(nèi);
(4)若該校九年級共有500名學(xué)生,請你估計(jì)這次測試中C級和D級的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分別是AC、BC上的一點(diǎn),且DE=6 ,若以DE為直徑的圓與斜邊AB相交于M、N,則MN的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=﹣6x1x2時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,,點(diǎn),分別在、上,,,相交于點(diǎn),若圖中陰影部分的面積與正方形的面積之比為,則的周長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在Rt△ABC中,CD是斜邊上的中線,CE是高.已知AB=10cm,DE=2.5cm,則∠BDC=____________度,S△BCD=______cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3,若S1=2,S3=4,則S2的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com