一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC。
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎樣的平移可以使頂點在坐標原點?
(3)設(shè)拋物線交y軸正半軸于D點,問:是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由。
解:(1)設(shè)拋物線的解析式為: y=a(x- m+)(x-m -2)=d(x- m)2-4a,
∵AC⊥BC,由拋物線的對稱性可知:△ACB是等腰直角三角形,又AB=4
∴C(m,-2),代入得a=,∴解析式為:y=(x-m)2-2;
(2)∵m為小于0的常數(shù),
∴只需將拋物線向右平移-m個單位長度,再向上平移2個單位長度,
可以使拋物線y=(x-m)2-2的頂點在坐標原點;
(3)由(1)得D(0,m2-2),設(shè)存在實數(shù)m,使得△BOD為等腰三角形,
∵△BOD為直角三角形,
∴只能OD=OB,∴m2-2=|m+2|,
當m+2>0時,解得m=4或m=-2(舍);
當m+2<0時,解得m=0(舍)或m=-2(舍);
當m+2=0,即m=-2時,B、O、D三點重合(不合題意,舍)
綜上所述:存在實數(shù)m=4,使得△BOD為等腰三角形。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一開口向上的拋物線與x軸交于A,B兩點,C(m,-2)為拋物線頂點,且AC⊥BC.
(1)若m是常數(shù),求拋物線的解析式;
(2)設(shè)拋物線交y軸正半軸于D點,拋物線的對稱軸交x軸于E點.問是否存在實數(shù)m,使得△EOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點;
(3)設(shè)拋物線交y軸正半軸于D點,問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點(m為常數(shù)),記拋物線頂點為C,且AC⊥BC.
(1)求點C的坐標;
(2)求拋物線的解析式;
(3)若m小于0,那么(2)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(32):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點;
(3)設(shè)拋物線交y軸正半軸于D點,問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(22):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一開口向上的拋物線與x軸交于A(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.
(1)若m為常數(shù),求拋物線的解析式;
(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點;
(3)設(shè)拋物線交y軸正半軸于D點,問是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案