如圖①,AB是半圓O的直徑,以O(shè)A為直徑作半圓C,P是半圓C上的一個動點(diǎn)(P與點(diǎn)A,O不重合),AP的延長線交半圓O于點(diǎn)D,其中OA=4.
(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接OD,當(dāng)OD與半圓C相切時,求的長;
(3)過點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
解:(1)AP=PD。理由如下:
如圖①,連接OP,OD,
∵OA是半圓C的直徑,∴∠APO=90°,即OP⊥AD。
又∵OA=OD,∴AP=PD。
(2)如圖①,連接PC、OD.
∵OD是半圓C的切線,∴∠AOD=90°。
由(1)知,AP=PD.
又∵AC=OC,∴PC∥OD!唷螦CP=∠AOD=90°。
∵OA=4,∴AC=2。
∴的長=。
(3)分兩種情況:
①當(dāng)點(diǎn)E落在OA上(即0<x≤時),如圖②,
連接OP,則∠APO=∠AED.
又∵∠A=∠A,∴△APO∽△AED!。
∵AP=x,AO=4,AD=2x,AE=4﹣y,∴。
∴(0<x≤).
②當(dāng)點(diǎn)E落在線段OB上(即<x<4)時,如圖③,
連接OP,同①可得,△APO∽△AED。
∴。
∵AP=x,AO=4,AD=2x,AE=4+y,∴ 。
∴(<x<4)。
綜上所述,y與x之間的函數(shù)關(guān)系式為
【解析】
試題分析:(1)AP=PD.理由如下:如圖①,連接OP.利用圓周角定理知OP⊥AD.然后由等腰三角形“三合一”的性質(zhì)證得AP=PD。
(2)由三角形中位線的定義證得CP是△AOD的中位線,則PC∥DO,所以根據(jù)平行線的性質(zhì)、切線的性質(zhì)易求弧AP所對的圓心角∠ACP=90°,從而求出的長。
(3)分類討論:點(diǎn)E落在線段OA和線段OB上,這兩種情況下的y與x的關(guān)系式.這兩種情況都是根據(jù)相似三角形(△APO∽△AED)的對應(yīng)邊成比例來求y與x之間的函數(shù)關(guān)系式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
如圖6,AB是半圓O的直徑,點(diǎn)M是半徑OA的中點(diǎn),點(diǎn)P在線段AM上運(yùn)動(不與點(diǎn)M重合),點(diǎn)Q在半圓O上運(yùn)動,且總保持PQ=PO,過點(diǎn)Q作⊙O的切線交BA的延長線于點(diǎn)C.
(1)當(dāng)∠QPA=60°時,請你對△QCP的形狀做出猜想,并給予說明.
(2)當(dāng)PQ⊥AB時,△QCP的形狀是________三角形.
(3)由(1)(2)得出的結(jié)論,請進(jìn)一步猜想當(dāng)點(diǎn)P在線段AM上運(yùn)動到任何位置時,△QCP一定是________三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省初三上學(xué)期期末數(shù)學(xué)卷 題型:選擇題
如圖1,AB是⊙O的直徑,C、D是半圓的三等分點(diǎn),則∠C+∠D+∠E的度數(shù)是( )
A.90° B.120° C.105° D.150°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com