如圖,拋物線y=ax2+bx(a>0)與雙曲線y=數(shù)學(xué)公式相交于點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B在第三象限內(nèi),連結(jié)AB交y軸于點(diǎn)E,且S△BOE=數(shù)學(xué)公式S△AOB(O為坐標(biāo)原點(diǎn)).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)過(guò)點(diǎn)A作直線平行于x軸交拋物線于另一點(diǎn)C.問(wèn)在y軸上是否存在點(diǎn)P,使△POC與△OBE相似,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;
(3)拋物線與x軸的負(fù)半軸交于點(diǎn)D,過(guò)點(diǎn)B作直線l∥y軸,點(diǎn)Q在直線l上運(yùn)動(dòng),且點(diǎn)Q的縱坐標(biāo)為t,試探索:當(dāng)S△AOB<S△QOD<S△BOC時(shí),求t的取值范圍.

解:(1)點(diǎn)A(1,4)在雙曲線y=上,得k=4
∵S△BOE=S△AOB,
∴|xA|:|xB|=1:2
∴xB=-2,
∵點(diǎn)B在雙曲線y=上,
∴點(diǎn)B的坐標(biāo)為(-2,-2)
∵點(diǎn)A,B都在y=ax2+bx(a>0)上,

解得:
所求的二次函數(shù)的解析式為:y=x2+3x;

(2)∵點(diǎn)C坐標(biāo)為(-4,4),若點(diǎn)P在y軸的正半軸,則∠POC=45°,不符合題意.
所以點(diǎn)P在y軸的負(fù)半軸上,則∠POC=45°
此時(shí)有∠POC=∠BOE=135°,
所以時(shí),
△POC與△OBE相似
∴OP=4或8.
所以點(diǎn)P的坐標(biāo)為(0,-4)或(0,-8);

(3)設(shè)點(diǎn)Q的坐標(biāo)為(-2,t)
∵直線AB經(jīng)過(guò)點(diǎn)A(1,4),B(-2,-2)
∴直線AB的函數(shù)關(guān)系式為y=2x+2
∴E(0,2)
由y=x2+3x可知點(diǎn)D(-3,0).
∵S△AOB=3,S△QOD=,S△BOC=8
∴3<<8
當(dāng)t≥0時(shí),2<t<
當(dāng)t<0時(shí),-<t<-2
綜上:2<t<或-<t<-2
分析:(1)首先求得反比例函數(shù)的解析式,然后求得點(diǎn)B的坐標(biāo),利用待定系數(shù)法求得拋物線的解析式即可;
(2)根據(jù)△POC與△OBE相似,得到OP=4或8,從而求得點(diǎn)P的坐標(biāo)即可;
(3)求得點(diǎn)Q、點(diǎn)E、點(diǎn)D的坐標(biāo),從而表示出S△AOB=3,S△QOD=,S△BOC=8,得到3<<8,從而求得t的取值范圍;
點(diǎn)評(píng):此題考查了二次函數(shù)的綜合題目,第一問(wèn)的解答關(guān)鍵是掌握待定系數(shù)法的運(yùn)用,求解第二問(wèn)需要我們會(huì)根據(jù)相似三角形的性質(zhì)求線段的長(zhǎng),涉及到了分類討論的數(shù)學(xué)思想,此類綜合題目,難度較大,注意逐步分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案