【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點O在邊AB上,且⊙O經(jīng)過B、D兩點;并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,平面上的動點P滿足PC⊥AB,記∠APB=α.
(1)如圖1,當點P在直線BC上方時,直接寫出∠PAC的大小(用含α的代數(shù)式表示);
(2)過點B作BC的垂線BD,同時作∠PAD=60°,射線AD與直線BD交于點D.
①如圖2,判斷△ADP的形狀,并給出證明;
②連結(jié)CD,若在點P的運動過程中,CD=AB.直接寫出此時α的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8cm,BC=6cm. 點P從點A出發(fā),沿AB邊以2 cm/s的速度向點B勻速移動;點Q從點B出發(fā),沿BC邊以1 cm/s的速度向點C勻速移動, 當一個運動點到達終點時,另一個運動點也隨之停止運動,設運動的時間為t(s).
(1)當PQ∥AC時,求t的值;
(2)當t為何值時,△PBQ的面積等于cm 2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點
(1)求b,k的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當直線與雙曲線沒有交點時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列命題中:(1)拋物線y=2(x﹣3)2﹣6頂點坐標是(3,﹣6);(2)一元二次方程x2﹣2x+=0的兩根之和等于2;(3)已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=﹣2,與x軸的一個交點為(2,0).若關(guān)于x的一元二次方程ax2+bx+c=p(p>0)有整數(shù)根,則p的值有4個;(4)二次函數(shù)y=﹣x2﹣2x+c在﹣3≤x≤2的范圍內(nèi)有最小值﹣5,則c的值是﹣2.其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家銷售一種商品,銷售一段時間后發(fā)現(xiàn),每天的銷量y(件)與當天的銷售單價x(元/件)滿足一次函數(shù)關(guān)系,并且當x=30時,y=500;當x=35時,y=450.物價部門規(guī)定,該商品的銷售單價不能超過48元/件,若該商品的定價為30元,實際按定價的8折出售,仍然可以獲得20%的利潤.
(1)求該商品的成本價和每天獲得的最大利潤;
(2)該公司每天需要人工、水電和房租支出共計b元,若考慮這一因素后公司對最大利潤要控制在8000元至8500元之間(包含8000和8500),求出b的取值范圍;
(3)若該商品的進價改為a元,每天的銷量與當天的銷售單價的關(guān)系不變,當30≤x≤48時,該商品利潤隨x的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.
(1)第一次購進的甲、乙兩種水果各多少千克?
(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎(chǔ)上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某中學九年級數(shù)學活動小組選定測量學校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com