為進一步建設秀美、宜居的生態(tài)環(huán)境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現(xiàn)計劃用210000元資金,購買這三種樹共1000棵.
(1)求乙、丙兩種樹每棵各多少元?
(2)若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?
(3)若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?
(1)乙種樹每棵200元,丙種樹每棵300元(2)甲種樹600棵,乙種樹300棵,丙種樹100棵(3)201棵
【解析】解:(1)已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,
∴乙種樹每棵200元,丙種樹每棵×200=300(元)。
(2)設購買乙種樹x棵,則購買甲種樹2x棵,丙種樹(1000-3x)棵.
根據題意:200·2x+200x+300(1000-3x)=210000,
解得x=30。
∴2x=600,1000-3x=100,
答:能購買甲種樹600棵,乙種樹300棵,丙種樹100棵。
(3)設購買丙種樹y棵,則甲、乙兩種樹共(1000-y)棵,
根據題意得:200(1000-y)+300y≤210000+10120,
解得:y≤201.2。
∵y為正整數(shù),∴y最大為201。
答:丙種樹最多可以購買201棵。
(1)利用已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,即可求出乙、丙兩種樹每棵錢數(shù)。
(2)設購買乙種樹x棵,則購買甲種樹2x棵,丙種樹(1000-3x)棵,利用(1)中所求樹木價格以及現(xiàn)計劃用210000元資金購買這三種樹共1000棵,得出等式方程,求出即可。
(3)設購買丙種樹y棵,則甲、乙兩種樹共(1000-y)棵,根據題意列不等式,求出即可
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(帶解析) 題型:解答題
為進一步建設秀美、宜居的生態(tài)環(huán)境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現(xiàn)計劃用210000元資金,購買這三種樹共1000棵.
(1)求乙、丙兩種樹每棵各多少元?
(2)若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?
(3)若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源:2013年浙江省杭州市臨安市中考數(shù)學模擬試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2012年浙江省湖州市中考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com