如圖,拋物線(b,c是常數(shù),且c<0)與軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).
(1)請(qǐng)直接寫出點(diǎn)OA的長(zhǎng)度;
(2)若常數(shù)b,c滿足關(guān)系式:.求拋物線的解析式.
(3)在(2)的條件下,點(diǎn)P是軸下方拋物線上的動(dòng)點(diǎn),連接PB、PC.設(shè)△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有多少個(gè)(直接寫出結(jié)果)?
(1)OA=1;(2)拋物線的解析式;(3)①0<S<5;②+c,﹣2c;11.
【解析】
試題分析:(1)由點(diǎn)A的坐標(biāo)為(-1,0)可得:OA=1;
(2)根據(jù)拋物線過點(diǎn)A (-1,0),得到:b = c+,聯(lián)立,求出b,c的值即可;
(3)①分兩種情況進(jìn)行討論:(Ⅰ)當(dāng)﹣1<x<0時(shí);(Ⅱ)當(dāng)0<x<4時(shí);
②由0<S<5,S為整數(shù),得出S=1,2,3,4.分兩種情況進(jìn)行討論:(Ⅰ)當(dāng)﹣1<x<0時(shí),(Ⅱ)當(dāng)0<x<4時(shí).
試題解析:(1)OA=1;
(2)∵拋物線過點(diǎn)A (-1,0),
∴b=c+,
∵,
∴,
∵c<0,
∴,
∴,
∴拋物線的解析式;
(3)①設(shè)點(diǎn)P坐標(biāo)為(x,).
∵點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,﹣2),
∴AB=5,OC=2,直線BC的解析式為y=x﹣2.
分兩種情況:
(Ⅰ)當(dāng)﹣1<x<0時(shí),0<S<S△ACB.
∵S△ACB=AB•OC=5,
∴0<S<5;
(Ⅱ)當(dāng)0<x<4時(shí),過點(diǎn)P作PG⊥x軸于點(diǎn)G,交CB于點(diǎn)F.
∴點(diǎn)F坐標(biāo)為(x,x﹣2),
∴PF=PG﹣GF=﹣(x2﹣x﹣2)+(x﹣2)=﹣x2+2x,
∴S=S△PFC+S△PFB=PF•OB=(﹣x2+2x)×4=﹣x2+4x=﹣(x﹣2)2+4,
∴當(dāng)x=2時(shí),S最大值=4,
∴0<S≤4.
綜上可知0<S<5;
②∵0<S<5,S為整數(shù),
∴S=1,2,3,4.
分兩種情況:
(Ⅰ)當(dāng)﹣1<x<0時(shí),設(shè)△PBC中BC邊上的高為h.
∵點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,﹣2),
∴AC2=1+4=5,BC2=16+4=20,AB2=25,
∴AC2+BC2=AB2,∠ACB=90°,BC邊上的高AC=.
∵S=BC•h,∴h=.
如果S=1,那么h=×1=<,此時(shí)P點(diǎn)有1個(gè),△PBC有1個(gè);
如果S=2,那么h=×2=<,此時(shí)P點(diǎn)有1個(gè),△PBC有1個(gè);
如果S=3,那么h=×3=<,此時(shí)P點(diǎn)有1個(gè),△PBC有1個(gè);
如果S=4,那么h=×4=<,此時(shí)P點(diǎn)有1個(gè),△PBC有1個(gè);
即當(dāng)﹣1<x<0時(shí),滿足條件的△PBC共有4個(gè);
(Ⅱ)當(dāng)0<x<4時(shí),S=﹣x2+4x.
如果S=1,那么﹣x2+4x=1,即x2﹣4x+1=0,
∵△=16﹣4=12>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根,此時(shí)P點(diǎn)有2個(gè),△PBC有2個(gè);
如果S=2,那么﹣x2+4x=2,即x2﹣4x+2=0,
∵△=16﹣8=8>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根,此時(shí)P點(diǎn)有2個(gè),△PBC有2個(gè);
如果S=3,那么﹣x2+4x=3,即x2﹣4x+3=0,
∵△=16﹣12=4>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根,此時(shí)P點(diǎn)有2個(gè),△PBC有2個(gè);
如果S=4,那么﹣x2+4x=4,即x2﹣4x+4=0,
∵△=16﹣16=0,∴方程有兩個(gè)相等的實(shí)數(shù)根,此時(shí)P點(diǎn)有1個(gè),△PBC有1個(gè);
即當(dāng)0<x<4時(shí),滿足條件的△PBC共有7個(gè);
綜上可知,滿足條件的△PBC共有4+7=11個(gè).
故答案為+c,﹣2c;11.
.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
3 |
2 |
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com