【題目】知識(shí)鏈接:
“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問(wèn)題的基本的數(shù)學(xué)思想方法,通過(guò)“轉(zhuǎn)化、化歸”通常可以實(shí)現(xiàn)化未知為已知,化復(fù)雜為簡(jiǎn)單,從而使問(wèn)題得以解決.
(1)問(wèn)題背景:已知:△ABC.試說(shuō)明:∠A+∠B+∠C=180°.
問(wèn)題解決:(填出依據(jù))
解:(1)如圖①,延長(zhǎng)AB到E,過(guò)點(diǎn)B作BF∥AC.
∵BF∥AC(作圖)
∴∠1=∠C( )
∠2=∠A( )
∵∠2+∠ABC+∠1=180°(平角的定義)
∴∠A+∠ABC+∠C=180°(等量代換)
小結(jié)反思:本題通過(guò)添加適當(dāng)?shù)妮o助線,把三角形的三個(gè)角之和轉(zhuǎn)化成了一個(gè)平角,利用平角的定義,說(shuō)明了數(shù)學(xué)上的一個(gè)重要結(jié)論“三角形的三個(gè)內(nèi)角和等于180°.”
(2)類(lèi)比探究:請(qǐng)同學(xué)們參考圖②,模仿(1)的解決過(guò)程試說(shuō)明“三角形的三個(gè)內(nèi)角和等于180°”
(3)拓展探究:如圖③,是一個(gè)五邊形,請(qǐng)直接寫(xiě)出五邊形ABCDE的五個(gè)內(nèi)角之和∠A+∠B+∠C+∠D+∠E= .
【答案】(1)(2) 見(jiàn)解析;(3)540°
【解析】
(1)運(yùn)用平行線的性質(zhì)進(jìn)行分析即可;(2)運(yùn)用兩次兩直線平行,內(nèi)錯(cuò)角相等即可;(3)連接EC、EB,轉(zhuǎn)換成三個(gè)三角形的內(nèi)角和即可.
解:(1)如圖①,延長(zhǎng)AB到E,過(guò)點(diǎn)B作BF∥AC.
∵BF∥AC(作圖)
∴∠1=∠C(兩直線平行,內(nèi)錯(cuò)角相等)
∠2=∠A(兩直線平行,同位角相等)
∵∠2+∠ABC+∠1=180°(平角的定義)
∴∠A+∠ABC+∠C=180°(等量代換)
(2)如圖②,過(guò)C作MN∥AB
∵MN∥AB
∴∠1=∠B,∠2=∠A(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠1+∠ACB+∠2=180°(平角的定義)
∴A+∠ABC+∠C=180°
(3)如圖:連接EC、EB,
∵在△ABC、△ACD和△AED中,
∴∠BAC+∠B+∠ACB=180",∠DAC+∠ACD+∠ADC=180°∠DAE+∠E+∠ADE=180°
∴∠BAE+∠B+∠DCB+ ∠CDE+∠E
=∠BAC+∠CAD+∠DAE+∠BCA+∠ACD+∠ADE+∠ADC+∠B+∠E
=(∠BAC+∠B+∠ACB)+( ∠DAC+∠ACD+∠ADC)+( ∠DAE+∠E+∠ADE)
=540°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠為了檢驗(yàn)甲、乙兩車(chē)間生產(chǎn)的同一種零件的直徑的合格情況,隨機(jī)各抽取了10個(gè)樣品進(jìn)行檢測(cè),已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:)
170~174 | 175~179 | 180~184 | 185~189 | |
甲車(chē)間 | 1 | 3 | 4 | 2 |
乙車(chē)間 | 0 | 6 | 2 | 2 |
(1)分別計(jì)算甲、乙兩車(chē)間生產(chǎn)的零件直徑的平均數(shù);
(2)直接說(shuō)出甲、乙兩車(chē)間生產(chǎn)的零件直徑的中位數(shù)都在哪個(gè)小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?
(3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車(chē)間哪一個(gè)車(chē)間生產(chǎn)的零件直徑合格率高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過(guò)點(diǎn)C作CE∥AD交△ABC的外接圓O于點(diǎn)E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,按以下步驟作圖:①分別以點(diǎn)A和點(diǎn)C為圓心,以大于AC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M和N;②作直線MN交CD于點(diǎn)E,若AB=8,AD=6,則EC=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AD是△ABC的中線,E為AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE延長(zhǎng)線于點(diǎn)F,連接CF.
(1)如圖1,求證:四邊形ADCF是平行四邊形;
(2)如圖2.連接CE,在不添加任何助線的情況下,請(qǐng)直接寫(xiě)出圖2中所有與△BEC面積相等的三角形。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn).
(1)如果圖中線段都可畫(huà)成有向線段,那么在這些有向線段所表示的向量中,與向量相等的向量是 ;
(2)設(shè)=,=,=.試用向量,或表示下列向量:= ;= .
(3)求作:.(請(qǐng)?jiān)谠瓐D上作圖,不要求寫(xiě)作法,但要寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過(guò)直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為( 。
A. 12 B. 9 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校召集留守兒童過(guò)端午節(jié),桌上擺有甲、乙兩盤(pán)粽子,每盤(pán)中盛有白粽2個(gè),豆沙粽1個(gè),肉粽1個(gè)(粽子外觀完全一樣).
(1)小明從甲盤(pán)中任取一個(gè)粽子,取到豆沙粽的概率是 ;
(2)小明在甲盤(pán)和乙盤(pán)中先后各取了一個(gè)粽子,請(qǐng)用樹(shù)狀圖或列表法求小明恰好取到兩個(gè)白粽子的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,點(diǎn)在對(duì)角線上,過(guò)點(diǎn)作,分別交,于點(diǎn),,連結(jié),.若,,圖中陰影部分的面積為,則矩形的周長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com