如圖,已知AB是⊙O1的直徑,點(diǎn)C是⊙O1上不同于A,B的一點(diǎn),以線段AC為直徑作⊙O2交AB于點(diǎn)D,過點(diǎn)D作DEBC,交⊙O2于點(diǎn)E,交AC于點(diǎn)F.求證:
(1)EC是⊙O1的切線;
(2)CE2=EF•BC.
證明:(1)連接O1C,則∠O1CB=∠B,
∵DEBC,
∴∠EDA=∠B.
∵∠EDA=∠ECA,
∴∠ECA=∠O1CB.
∵AB是⊙O1的直徑,
∴∠ACO1+∠O1CB=90°.
∵∠ECA=∠O1CB,
∴∠ACO1+∠ECA=90°.
∴EC是⊙O1的切線.

(2)連接CD,則∠CDA=∠CDB=90°,
∵DEBC,∠ACB=90°,
∴∠CFD=∠ACB=90°.
∵AC是⊙O2的直徑,
∴AC垂直平分ED.
∴EF=FD,CE=CD.
∵∠FDC=∠DCB,∠CFD=∠BDC=90°,
∴△CFD△BDC.
CD
BC
=
FD
CD

∴CD2=FD•BC.
∵EF=FD,CE=CD,
∴CE2=EF•BC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

半徑為5的⊙O,圓心在原點(diǎn)O,點(diǎn)P(-3,4)與⊙O的位置關(guān)系是( 。
A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=2
3
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)A、B在⊙O上,直線AC是⊙O的切線,OD⊥OB,連接AB交OC于點(diǎn)D.
(1)求證:AC=CD;
(2)若AC=2,AO=
5
,求OD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(q0fq•張家口一模)如4:⊙O與AB相切于點(diǎn)A,BO與⊙O交于點(diǎn)6,∠BA6=手0°,則∠B等于( 。
A.20°B.50°C.30°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以Rt△ABC的直角邊AB為直徑的半圓O,與斜邊AC交于D,E是BC邊上的中點(diǎn),連接DE.
(1)DE與半圓O相切嗎?若相切,請(qǐng)給出證明;若不相切,說明理由;
(2)如果AD,AB的長(zhǎng)是方程x2-10x+24=0的兩個(gè)根,試求直角邊BC的長(zhǎng);
(3)試在(1)(2)的基礎(chǔ)上,提出一個(gè)有價(jià)值的問題(不必解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)O在Rt△ABC的斜邊AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的⊙O切BC于點(diǎn)D,且分別交AC、AB于點(diǎn)E、F,若AC=6,BC=6
3

(1)求⊙O的半徑;
(2)求弓形EDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O的直徑AB與弦AC的夾角為30°,過點(diǎn)C的切線PC與AB的延長(zhǎng)線交于P.PC=5,則⊙O的半徑為( 。
A.
5
3
6
B.
5
3
3
C.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

2006年6月某工廠將地處A,B兩地的兩個(gè)小工廠合成一個(gè)大廠,為了方便A,B兩地職工的聯(lián)系,企業(yè)準(zhǔn)備在相距2km的A,B兩地之間修一條筆直的公路(即圖中的線段AB),經(jīng)測(cè)量,在A地的北偏東60°方向,B地的西偏北45°方向的C處有一半徑為0.7km的公園,則修筑的這條公路會(huì)不會(huì)穿過公園?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案